精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=Asin(ωx+φ)(φ|<$\frac{π}{2}$)的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)求f(x)的单调减区间
(3)当x∈[0,$\frac{π}{12}$]时,求函数f(x)的最大值,并且求使f(x)取得最大值时x的值.

分析 (1)由题意求出A,T,利用周期公式求出ω,利用当x=$\frac{π}{6}$时取得最大值2,求出φ,得到函数的解析式,即可得解.
(2)由$\frac{π}{2}+2kπ≤2x+\frac{π}{6}≤\frac{3π}{2}+2kπ$,k∈Z即可解得f(x)的单调减区间.
(3)由$x∈[0,\frac{π}{12}]$,可求2x+$\frac{π}{6}$的范围,利用正弦函数的图象和性质即可得解最大值.

解答 (本题满分为14分)
解:(1)∵A>0,ω>0,
∴由图象知A=2,…(1分)
由于f(x)的最小正周期$T=4×(\frac{5π}{12}-\frac{π}{6})=π$,故$ω=\frac{2π}{T}=2$,…(3分)
将点$(\frac{π}{6},2)$代入f(x)的解析式得:$sin(\frac{π}{3}+φ)=1$,
又$|φ|<\frac{π}{2}$,
可得:$φ=\frac{π}{6}$,…(5分)
故函数f(x)的解析式为:$f(x)=2sin(2x+\frac{π}{6})$.…(6分)
(2)由$\frac{π}{2}+2kπ≤2x+\frac{π}{6}≤\frac{3π}{2}+2kπ$,…(8分)
得$\frac{π}{6}+kπ≤x≤\frac{2π}{3}+kπ$,k∈Z,
所以减区间为:$[{\frac{π}{6}+kπ,\frac{2π}{3}+kπ}]({k∈Z})$.…(10分)
(3)当$x∈[0,\frac{π}{12}]$时,可得:$2x+\frac{π}{6}∈[\frac{π}{6},\frac{π}{3}]$,…(12分)
所以当$2x+\frac{π}{6}=\frac{π}{3}$,即$x=\frac{π}{12}$时,f(x)的最大值$\sqrt{3}$.…(14分)

点评 本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,正弦函数的图象和性质,解题时要注意函数的周期的求法,考查计算能力,是常考题型,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.6张同排连号的电影票,分给3名教师与3名学生,若要求师生相间而坐,则不同的分法有(  )
A.$A_3^3$•$A_4^3$B.$A_3^3$•$A_3^3$C.$A_4^3$•$A_4^3$D.2$A_3^3$•$A_3^3$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知圆C的方程:x2+y2-2x-4y+a=0,a∈R.
(1)求实数a的取值范围;
(2)若直线m:x-y-1=0与圆C交于点P,Q两点且|PQ|=2$\sqrt{2}$,求实数a的值;
(3)已知点O为坐标原点,平分圆C的面积的直线l分别与x,y轴的正半轴交于A,B两点,设使△AOB的面积为S的直线l恰有两条,求S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若球的表面积为8π,则球的体积是$\frac{8\sqrt{2}}{3}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知△ABC的三个顶点分别为A(1,2),B(5,0),C(3,4).
(1)求直线AB的方程.
(2)求BC边上的中线所在直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=tan(2x+φ)(-$\frac{π}{2}$<φ<$\frac{π}{2}$)的一个对称中心为($\frac{π}{3}$,0),则φ的值是(  )
A.-$\frac{π}{6}$B.$\frac{π}{3}$C.-$\frac{π}{3}$D.-$\frac{π}{6}$或$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知曲线C1的参数方程为$\left\{\begin{array}{l}{x=cosα}\\{y=1+sinα}\end{array}\right.$(α为参数),以原点为极点,x轴正半轴为极轴建立极坐标系.曲线C2的极坐标方程为ρsinθ=1.
(1)将曲线C1的普通方程和曲线C2的直角坐标方程;
(2)求曲线C1与曲线C2的交点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若二项式(3x-$\frac{1}{\root{3}{x}}$)n的展开式中各项系数之和为256.
(1)求展开式中二项式系数最大的项;
(2)求展开式中的常数项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.青岛发生输油管道爆炸事故造成胶州湾局部污染,国家海洋局用分层抽样的方法从国家环保专家、海洋生物专家、油气专家三类专家库中抽取若干组成研究小组赴泄油海域工作,有关数据见表一(单位:人)
表一:
  相关人员数抽取人数
 环保专家 24 x
 海洋生物专家 48 4
 油气专家 36 y
表二:
  重度污染 轻度污染 合计
 身体健康 30 A 50
 身体不健康 B 10 60
 合计 C D E
海洋生物专家为了检测该地污染后对海洋生物身体健康的影响,随机选取了110只海豚进行了检测,并将有关数据整理为不完整的2×2的列联表,如表二.
(1)求研究小组的人数;
(2)写出表二中A,B,C,D,E的值,并做出判断能否有99%的把握认为“海豚身体健康与受到污染有关”;(3)若从环保小组的环保专家和油气专家随机选2人撰写研究报告,求其中恰好有1人为环保专家的概率.
解答时可参考下面公式及临界值表:k0=$\frac{n(ad-bc)^{2}}{(a+b)(b+d)(a+b)(c+b)}$.
 P(K2≥k0 0.10 0.05 0.025 0.010 0.005
 k0 2.706 3.841 5.024 0.635 7.879

查看答案和解析>>

同步练习册答案