分析 (1)把参数方程与极坐标方程化为直角坐标方程,求得曲线C1的普通方程x2+(y-1)2=1,由y=ρsinθ=1,曲线C2的直角坐标方程y=1;
(2)将y=1,代入得曲线C1的普通方程解方程,即可求得交点坐标.
解答 解:(1)由$\left\{\begin{array}{l}{x=cosα}\\{y=1+sinα}\end{array}\right.$,
得x2+(y-1)2=1,
曲线C1的普通方程x2+(y-1)2=1,
∵ρsinθ=1,
∴曲线C2的直角坐标方程y=1;
(2)$\left\{\begin{array}{l}{{x}^{2}+(y-1)^{2}=1}\\{y=1}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{x=-1}\\{y=1}\end{array}\right.$或$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$,
直线l与圆的交点的直角坐标为(-1,1),(1,1).
点评 本题考查参数方程与普通方程的转化,将极坐标方程转化成直角坐标方程,考查直线与圆的交点问题,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 25 | B. | 125 | C. | 120 | D. | 24 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-$\sqrt{3}$,$\sqrt{3}$] | B. | [-3,3] | C. | [-$\sqrt{3}$,3] | D. | [-3,$\sqrt{3}$] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com