精英家教网 > 高中数学 > 题目详情
18.已知E(2,2)是抛物线C:y2=2px上一点,经过点D(2,0)的直线l与抛物线C交于A,B两点(不同于点E),直线EA,EB分别交直线x=-2于点M,N
(1)求抛物线方程及其焦点坐标,准线方程;
(2)已知O为原点,求证:∠MON为定值.

分析 (1)将E代入抛物线方程,即可求得p的值,即可求得焦点坐标及准线方程;
(2)方法一:由直线l不经过点E,则直线l的斜率存在,设直线l方程为y=k(x-2),代入抛物线方程,求得M和N点坐标,利用韦达定理及向量数量积的坐标运算,即可求得$\overrightarrow{OM}$•$\overrightarrow{ON}$=0,则∠MON为定值$\frac{π}{2}$;
方法二:设直线l的方程:x=my+2,代入抛物线方程,求得M和N点坐标,利用韦达定理及向量数量积的坐标运算,即可求得$\overrightarrow{OM}$•$\overrightarrow{ON}$=0,则∠MON为定值$\frac{π}{2}$.

解答 解:(1)将E(2,2)代入y2=2px,得p=1,
∴抛物线方程为y2=2x,焦点坐标为($\frac{1}{2}$,0),准线方程x=-$\frac{1}{2}$;.…(3分)
(2)证明:设A($\frac{{y}_{1}^{2}}{2}$,y1),B($\frac{{y}_{2}^{2}}{2}$,y2),M(xM,yM),N(xN,yN),
因为直线l不经过点E,则直线l的斜率存在,
设直线l方程为y=k(x-2),
与抛物线方程联立得到$\left\{\begin{array}{l}{y=k(x-2)}\\{{y}^{2}=2x}\end{array}\right.$,消去x,整理得:ky2-2y-4k=0,
则由韦达定理得:y1+y2=$\frac{2}{k}$,y1y2=-4,…(6分)
直线AE的方程为:y-2=$\frac{{y}_{1}-2}{\frac{{y}_{1}^{2}}{2}-2}$(x-2),
即y=$\frac{2}{{y}_{1}+2}$(x-2)+2,
令x=-2,得yM=$\frac{2{y}_{1}-4}{{y}_{1}+2}$,…(9分)
同理可得:yN=$\frac{2{y}_{2}-4}{{y}_{2}+2}$,…(10分)
又∵$\overrightarrow{OM}$=(-2,yM),$\overrightarrow{ON}$=(-2,yN),
则$\overrightarrow{OM}$•$\overrightarrow{ON}$=4+yMyN=4+$\frac{2{y}_{1}-4}{{y}_{1}+2}$×$\frac{2{y}_{2}-4}{{y}_{2}+2}$,
=4+$\frac{4[{y}_{1}{y}_{2}-2({y}_{1}+{y}_{2})+4]}{[{y}_{1}{y}_{2}+2({y}_{1}+{y}_{2})+4]}$=4+$\frac{4(-4-\frac{4}{k}+4)}{-4+\frac{4}{k}+4}$=0…(13分)
∴OM⊥ON,即∠MON为定值$\frac{π}{2}$.…(14分).
方法二:证明:设A($\frac{{y}_{1}^{2}}{2}$,y1),B($\frac{{y}_{2}^{2}}{2}$,y2),M(xM,yM),N(xN,yN),
设直线l方程为x=my+2,
于抛物线方程联立得$\left\{\begin{array}{l}{x=my+2}\\{{y}^{2}=2x}\end{array}\right.$,整理得:y2-2my-4=0,
则由韦达定理得:y1+y2=2m,y1y2=-4,…(6分)
直线AE的方程为:y-2=$\frac{{y}_{1}-2}{\frac{{y}_{1}^{2}}{2}-2}$(x-2),
即y=$\frac{2}{{y}_{1}+2}$(x-2)+2,
令x=-2,得yM=$\frac{2{y}_{1}-4}{{y}_{1}+2}$,…(9分)
同理可得:yN=$\frac{2{y}_{2}-4}{{y}_{2}+2}$,…(10分)
又∵$\overrightarrow{OM}$=(-2,yM),$\overrightarrow{ON}$=(-2,yN),
则$\overrightarrow{OM}$•$\overrightarrow{ON}$=4+yMyN=4+$\frac{2{y}_{1}-4}{{y}_{1}+2}$×$\frac{2{y}_{2}-4}{{y}_{2}+2}$,
=4+$\frac{4[{y}_{1}{y}_{2}-2({y}_{1}+{y}_{2})+4]}{[{y}_{1}{y}_{2}+2({y}_{1}+{y}_{2})+4]}$=4+$\frac{4(-4-2m+4)}{-4+2m+4}$=0…(13分)
∴OM⊥ON,即∠MON为定值$\frac{π}{2}$.…(14分)

点评 本题考查抛物线的简单几何性质,直线与抛物线的位置关系,考查韦达定理,向量数量积的坐标运算,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.若圆${C_1}:{(x-1)^2}+{(y-2)^2}=4$与圆${C_2}:{(x+1)^2}+{y^2}=8$相交于点A,B,则|AB|=$\sqrt{14}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知全集U=R,集合$A=\{y|y=ln(x+1),x>0\},B=\{x|\frac{1}{2}≤{2^x}≤8\}$.
(1)求(∁UA)∪B;
(2)C={x|a-1≤x≤2a},若A∩C=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.2C${\;}_{9}^{0}$-C${\;}_{9}^{1}$+2C${\;}_{9}^{2}$-C${\;}_{9}^{3}$+2C${\;}_{9}^{4}$-C${\;}_{9}^{5}$+2C${\;}_{9}^{6}$-C${\;}_{9}^{7}$+2C${\;}_{9}^{8}$-C${\;}_{9}^{9}$=256.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.观察如图:
1,
2,3
4,5,6,7
8,9,10,11,12,13,14,15,

问:(1)此表第n行的最后一个数是多少?
(2)此表第n行的各个数之和是多少?
(3)2010是第几行的第几个数?
(4)是否存在n∈N*,使得第n行起的连续10行的所有数之和为227-213-120?若存在,求出n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设a,b∈R,i是虚数单位,则“ab=0”是“复数a-bi为纯虚数”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.即不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设p:实数x满足x2+2ax-3a2<0(a>0),q:实数x满足x2+2x-8<0,且?p是?q的必要不充分条件,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某县共有户籍人口60万人,该县60岁以上、百岁以下的人口占比13.8%,百岁及以上的老人15人.现从该县60岁及以上、百岁以下的老人中随机抽取230人,得到如下频数分布表:
 年龄段(岁)[60,70)[70,80)[80,90)[90,99)
 人数(人) 125 75 255
(1)从样本中70岁及以上老人中采用分层抽样的方法抽取21人进一步了解他们的生活状况,则80岁及以上老人应抽多少人?
(2)从(1)中所抽取的80岁及以上的老人中,再随机抽取2人,求抽到90岁及以上老人的概率;
(3)该县按省委办公厅、省人民政府办公厅《关于加强新时期老年人优待服务工作的意见》精神,制定如下老年人生活补贴措施,由省、市、县三级财政分级拨款.
①本县户籍60岁及以上居民,按城乡居民养老保险实施办法每月领取55元基本养老金;
②本县户籍80岁及以上老年人额外享受高龄老人生活补贴.
(a)百岁及以上老年人,每人每月发放345元生活补贴;
(b)90岁及以上、百岁以下老年人,每人每月发放200元的生活补贴;
(c)80岁及以上、90岁以下老年人,每人每月发放100元的生活补贴.
试估计政府执行此项补贴措施的年度预算.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.对大于或等于2的自然数m的n次方幂有如下分解式:22=1+3,32=1+3+5,42=1+3+5+7;23=3+5,33=7+9+11,43=13+15+17+19.
根据上述分解规律52=1+3+5+7+9,则53的分解中最大的数是29.

查看答案和解析>>

同步练习册答案