精英家教网 > 高中数学 > 题目详情
3.若圆${C_1}:{(x-1)^2}+{(y-2)^2}=4$与圆${C_2}:{(x+1)^2}+{y^2}=8$相交于点A,B,则|AB|=$\sqrt{14}$.

分析 求出两圆半径和圆心距,设AM=h,利用勾股定理列方程求出h,从而得出AB.

解答 解:设AB的中点为M,则AM⊥C1C2
C1C2=$\sqrt{(1+1)^{2}+{2}^{2}}$=2$\sqrt{2}$,C1A=2,C2A=2$\sqrt{2}$,
设AM=h,则C1M=$\sqrt{4-{h}^{2}}$,C2M=$\sqrt{8-{h}^{2}}$,
∴$\sqrt{4-{h}^{2}}$+$\sqrt{8-{h}^{2}}$=2$\sqrt{2}$,解得h=$\frac{\sqrt{14}}{2}$
∴AB=2h=$\sqrt{14}$.
故答案为:$\sqrt{14}$.

点评 本题考查了圆与圆的位置关系,圆的方程,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知△ABC,若存在△A1B1C1,满足$\frac{cosA}{{sin{A_1}}}=\frac{cosB}{{sin{B_1}}}=\frac{cosC}{{sin{C_1}}}=1$,则称△A1B1C1是△ABC的一个“对偶”三角形,若等腰△ABC存在“对偶”三角形,则其底角的弧度数为$\frac{3π}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知复数z1=3-bi,z2=1-2i(i是虚数单位),若$\frac{{z}_{1}}{{z}_{2}}$是纯虚数,则实数b的值为(  )
A.3B.-$\frac{3}{2}$C.6D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知$\overrightarrow a$=(2sinx,cos2x),$\overrightarrow b$=($\sqrt{3}$cosx,2),f(x)=$\overrightarrow a$•$\overrightarrow b$.
(1)求f(x)的最小正周期及单调递减区间;
(2求函数f(x)在区间[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow a=(1,-2)$,向量$\overrightarrow b$满足$|{\overrightarrow b}|=2$,$\overrightarrow a•\overrightarrow b$夹角为$\frac{π}{3}$,则$\overrightarrow a•\overrightarrow b$=(  )
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x)=|x-1|+|x+2|.
(1)解不等式f(x)≥5;
(2)若关于x的不等式f(x)>a2-2a-5对任意的x∈R恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C的中心为原点O,焦点在x轴上,且经过点${A_1}(-2,0),{A_2}(\sqrt{2},\frac{{\sqrt{2}}}{2})$
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过抛物线y2=4x的焦点F的直线l与椭圆C交于不同两点M,N,且满足$\overrightarrow{OM}$⊥$\overrightarrow{ON}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{1}{3}$x3-ax2+(a2-1)x+b(a,b∈R)
(1)若x=1为f(x)的极值点,求a的值;
(2)若y=f(x)的图象在点(1,f(1))处的切线方程为x+y-3=0,求f(x)在区间[-2,4]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知E(2,2)是抛物线C:y2=2px上一点,经过点D(2,0)的直线l与抛物线C交于A,B两点(不同于点E),直线EA,EB分别交直线x=-2于点M,N
(1)求抛物线方程及其焦点坐标,准线方程;
(2)已知O为原点,求证:∠MON为定值.

查看答案和解析>>

同步练习册答案