精英家教网 > 高中数学 > 题目详情
8.已知f(x)=|x-1|+|x+2|.
(1)解不等式f(x)≥5;
(2)若关于x的不等式f(x)>a2-2a-5对任意的x∈R恒成立,求a的取值范围.

分析 (1)根据x≤-2,-2<x<1,x≥1,由此能求出f(x)≥5的解集.
(2)由|x-1|+|x+2|≥|(x-1)-(x+2)|=3,能求出f(x)的最小值为3,要使得关于x的不等式f(x)>a2-2a-5对任意的x∈R恒成立,只需a2-2a-5<3,由此能求出a的取值范围.

解答 解:(1)当x≤-2时,f(x)=-(x-1)-(x+2)=-2x-1≥5,
解得x≤-3,
当-2<x<1时,f(x)=-(x-1)+(x+2)=3≥5不成立,
当x≥1时,f(x)=(x-1)+x+2=2x+1≥5,
解得x≥2,
综上有f(x)≥5的解集是(-∞,-3][2,+∞). …(6分)
(2)∵|x-1|+|x+2|≥|(x-1)-(x+2)|=3,
∴f(x)的最小值为3,
要使得关于x的不等式f(x)>a2-2a-5对任意的x∈R恒成立,
只需a2-2a-5<3,解得-2<a<4,
故a的取值范围是(-2,4).…(12分)

点评 本题考查不等式的解法,考查实数的取值范围的求法,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.扇形AOB的中心角为2θ,θ∈(0,$\frac{π}{2}$),半径为r,在扇形AOB中作内切圆O1与圆O1外切,与OA,OB相切的圆O2,问sinθ为何值时,圆O2的面积最大?最大值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)=xlnx
(1)当x∈(0,e](e是自然常数)时求f(x)的极小值;
(2)求f(x)在点(e,f(e))(e是自然常数)处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知球O的表面积为25π,长方体的八个顶点都在球O的球面上,则这个长方体的表面积的最大值为(  )
A.50B.100C.50πD.100π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若圆${C_1}:{(x-1)^2}+{(y-2)^2}=4$与圆${C_2}:{(x+1)^2}+{y^2}=8$相交于点A,B,则|AB|=$\sqrt{14}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在△ABC中,三个内角A、B、C的对边分别是a,b,c,sinA>sinB则下列结论不一定成立的是(  )
A.A>BB.sin2A>sin2BC.cos2A<cos2BD.a>b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.
(1)求第一次检测出的是次品且第二次检测出的是正品的概率;
(2)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.判断下列命题是全称命题还是特称命题,并用符号“?”或“?”表示下列命题.
(1)自然数的平方大于或等于零;
(2)圆x2+y2=1上存在一个点到直线y=x+1的距离等于圆的半径;
(3)有的函数既是奇函数又是增函数;
(4)对于数列{$\frac{n}{n+1}$},总存在正整数n0,使得a${\;}_{{n}_{0}}$与1之差的绝对值小于0.01.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设a,b∈R,i是虚数单位,则“ab=0”是“复数a-bi为纯虚数”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.即不充分也不必要条件

查看答案和解析>>

同步练习册答案