精英家教网 > 高中数学 > 题目详情
14.已知复数z1=3-bi,z2=1-2i(i是虚数单位),若$\frac{{z}_{1}}{{z}_{2}}$是纯虚数,则实数b的值为(  )
A.3B.-$\frac{3}{2}$C.6D.-6

分析 把z1=3-bi,z2=1-2i代入$\frac{{z}_{1}}{{z}_{2}}$,利用复数代数形式的乘除运算化简,再由实部为0且虚部不为0求得b值.

解答 解:∵z1=3-bi,z2=1-2i,
∴$\frac{{z}_{1}}{{z}_{2}}$=$\frac{3-bi}{1-2i}=\frac{(3-bi)(1+2i)}{(1-2i)(1+2i)}=\frac{(3+2b)+(6-b)i}{5}$,
又$\frac{{z}_{1}}{{z}_{2}}$是纯虚数,则$\left\{\begin{array}{l}{3+2b=0}\\{6-b≠0}\end{array}\right.$,得b=-$\frac{3}{2}$.
故选:B.

点评 本题考查复数的基本概念,考查复数代数形式的乘除运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.函数y=x2+$\frac{1}{x}$+1在x=1处的切线方程是y=x+2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.△ABC的三个内角A,B,C所对的边分别为a,b,c,若A=45°,B=75°,c=3$\sqrt{2}$,则a=(  )
A.2B.2$\sqrt{3}$C.2$\sqrt{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知 a=${4}^{\frac{2}{3}}$,b=${3}^{\frac{2}{3}}$,${c=25}^{\frac{1}{3}}$,则(  )
A.b<c<aB.a<b<cC.b<a<cD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.复数1+2i的共轭复数对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)=xlnx
(1)当x∈(0,e](e是自然常数)时求f(x)的极小值;
(2)求f(x)在点(e,f(e))(e是自然常数)处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合M={1,2,3,4,5},集合N={x|log4x≥1},则M∩N=(  )
A.{1,2,3}B.{4,5}C.ND.M

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若圆${C_1}:{(x-1)^2}+{(y-2)^2}=4$与圆${C_2}:{(x+1)^2}+{y^2}=8$相交于点A,B,则|AB|=$\sqrt{14}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知全集U=R,集合$A=\{y|y=ln(x+1),x>0\},B=\{x|\frac{1}{2}≤{2^x}≤8\}$.
(1)求(∁UA)∪B;
(2)C={x|a-1≤x≤2a},若A∩C=∅,求实数a的取值范围.

查看答案和解析>>

同步练习册答案