分析 由已知及正弦定理可得a:b:c=3:5:7,设a=3k,则b=5k,c=7k,再根据△ABC的周长为3k+5k+7k=15k=30,可得k=2,求得三边长,利用余弦定理即可得解.
解答 解:△ABC中,∵sinA:sinB:sinC=3:5:7,
故由正弦定理可得a:b:c=3:5:7.
设a=3k,则b=5k,c=7k,再根据△ABC的周长为 3k+5k+7k=15k=30,可得k=2,
故三角形的三边长分别为:a=6,b=10,c=14.
由余弦定理可得cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{100+196-36}{2×10×14}$=$\frac{13}{14}$.
故答案为:$\frac{13}{14}$.
点评 本题主要考查了正弦定理,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 8 | C. | 9 | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{\sqrt{3}}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com