精英家教网 > 高中数学 > 题目详情
19.设n∈N*,数列{an}的前n项和为Sn,已知Sn+1=Sn+an+2,a1,a2,a5成等比数列,则求数列{an}的通项公式为an=2n-1.

分析 通过Sn+1=Sn+an+2可知an+1=an+2,利用a1,a2,a5成等比数列可知$({a}_{1}+2)^{2}$=a1(a1+8),进而计算可知数列{an}是首项为1、公差为2的等差数列,整理即得结论.

解答 解:∵Sn+1=Sn+an+2,
∴Sn+1-Sn=an+2,记an+1=an+2,
又∵a1,a2,a5成等比数列,
∴${{a}_{2}}^{2}$=a1a5,即$({a}_{1}+2)^{2}$=a1(a1+8),
解得:a1=1,
∴数列{an}是首项为1、公差为2的等差数列,
∴an=1+2(n-1)=2n-1,
故答案为:2n-1.

点评 本题考查数列的通项,考查运算求解能力,注意解题方法的积累,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.函数y=2sin(ωx+φ)的部分图象如图所示,则ω,φ可以取的一组值是(  )
A.ω=2,φ=-$\frac{π}{3}$B.ω=2,φ=$\frac{π}{3}$C.ω=2,ω=-$\frac{π}{6}$D.ω=1,φ=$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列四组函数中,表示相等函数的一组是(  )
A.f(x)=1,f(x)=x0B.f(x)=|x|,f(t)=$\sqrt{t^2}$
C.f(x)=$\frac{x^2-1}{x-1}$,g(x)=x+1D.f(x)=$\sqrt{x+1}$•$\sqrt{x-1}$,g(x)=$\sqrt{x^2-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{x}$,$\overrightarrow{y}$都是向量,且4$\overrightarrow{x}$+3$\overrightarrow{y}$=$\overrightarrow{a}$,5$\overrightarrow{x}$-6$\overrightarrow{y}$=$\overrightarrow{b}$,试用$\overrightarrow{a}$,$\overrightarrow{b}$分别表示$\overrightarrow{x}$,$\overrightarrow{y}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知:实系数一元二次方程x2+px+q=0有虚根α=-1+$\sqrt{3}$i,另一根为β.
(1)求:实数p,q的值;
(2)求:α22的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在△ABC中,sinA:sinB:sinC=3:5:7,且周长为30,则cosA=$\frac{13}{14}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若O为边长为2的等边三角形的中心,则$\overrightarrow{AO}$•$\overrightarrow{AC}$=(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知点A,B在单位圆上,A(-$\frac{3}{5}$,$\frac{4}{5}$),B(1,0),∠BOA=a,如图所示
(1)求sinα+cosα;
(2)若tanθ=cotα,θ∈(-$\frac{π}{2}$,0),求sinθ及cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知$\overrightarrow{a}$,$\overrightarrow{b}$是两个不共线的非零向量,若8$\overrightarrow{a}$-5$\overrightarrow{b}$与k$\overrightarrow{a}$+2$\overrightarrow{b}$共线,则实数k=-$\frac{16}{5}$.

查看答案和解析>>

同步练习册答案