分析 (Ⅰ)由-2,a1,a3成等差数列,可得2a1=-2+a3,由{an}是等比数列,a2=2,q>0,可得a3=2q,a1=$\frac{{a}_{2}}{q}$=$\frac{2}{q}$,代入整理得:q2-q-2=0.
(Ⅱ)由(Ⅰ)an=2n-1,bn=anan+1-λnan+1=4n-λn2n,由S1>S2,可得S2-S1<0,即b2<0,23-2λ•22<0,解得:λ范围.Sk<Sk+1(k=2,3,4,…)恒成立,bn=anan+1-λnan+1,${b_{k+1}}={2^{2(k+1)-1}}-λ(k+1){2^{k+1}}>0$,即λ<$\frac{2^k}{k+1}$,利用其单调性即可得出.
解答 解:(Ⅰ)由-2,a1,a3成等差数列,∴2a1=-2+a3,
∵{an}是等比数列,a2=2,q>0,
∴a3=2q,a1=$\frac{{a}_{2}}{q}$=$\frac{2}{q}$,代入整理得:q2-q-2=0,解得:q=2,q=-1(舍去),∴q=2,---------------(4分)
(Ⅱ)由(Ⅰ)an=2n-1,bn=anan+1-λnan+1=4n-λn2n,
由S1>S2,∴S2-S1<0,即b2<0,∴23-2λ•22<0,解得:λ>1,
Sk<Sk+1(k=2,3,4,…)恒成立,bn=anan+1-λnan+1,
${b_{k+1}}={2^{2(k+1)-1}}-λ(k+1){2^{k+1}}>0$即λ<$\frac{2^k}{k+1}$,-------------------------(6分)
设ck=$\frac{2^k}{k+1}$(k≥2,k∈N*),只需要λ<(ck)min(k≥2,k∈N*)即可,
∵$\frac{{c}_{k+1}}{{c}_{k}}$=$\frac{{{2^{k+1}}}}{k+2}•\frac{k+1}{2^k}=\frac{k+k+2}{k+2}=\frac{k}{k+2}+1>1$,∴数列{cn}在k≥2且k∈N*上单调递增,--------(10分)
∴(ck)min=c2=$\frac{2^2}{3}=\frac{4}{3}$,∴λ<$\frac{4}{3}$,∵λ>1,∴λ∈(1,$\frac{4}{3}$).----------12
点评 本题考查了等差数列与等比数列的通项公式、数列的单调性、不等式的解法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{4}$ | B. | $-\frac{3}{4}$ | C. | $\frac{4}{3}$ | D. | $-\frac{4}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x^2}{16}-\frac{y^2}{12}=1$ | B. | $\frac{x^2}{4}-\frac{y^2}{12}=0(x≥2)$ | C. | y=0(|x|≥2) | D. | y=0(x≥2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,+∞)?? | B. | (-1,+∞)?? | C. | (-∞,0)? | D. | (-∞,-1) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com