精英家教网 > 高中数学 > 题目详情
10.若函数f(x)=3|x-1|+x2-2x+3+a的最小值为5,则a等于(  )
A.2B.3C.4D.5

分析 由f(x)=3|x-1|+(x-1)2+2+a,当x=1时,y=3|x-1|,y=(x-1)2,分别取得最小值1和0,即可得到f(x)的最小值,解a的方程可得a的值.

解答 解:函数f(x)=3|x-1|+x2-2x+3+a
=3|x-1|+(x-1)2+2+a,
当x=1时,y=3|x-1|,y=(x-1)2,分别取得最小值1和0,
则f(x)的最小值为3+a,
由题意可得3+a=5,
解得a=2.
故选:A.

点评 本题考查函数的最值的求法,注意运用指数函数和二次函数的值域求法,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知向量$\overrightarrow{a}$=(1,$\sqrt{3}$),|$\overrightarrow{b}$|=2.
(1)若<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{π}{3}$,求$\overrightarrow{a}$•$\overrightarrow{b}$和|$\overrightarrow{a}$-2$\overrightarrow{b}$|;
(2)若$\overrightarrow{a}$⊥$\overrightarrow{b}$,求向量$\overrightarrow{b}$的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若|$\overrightarrow{a}$+$\overrightarrow{b}$|=1,$\overrightarrow{a}$⊥$\overrightarrow{b}$,则|$\overrightarrow{a}$-$\overrightarrow{b}$|=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.命题p:?x>0,x2-x>0的否定形式为(  )
A.?x≤0,x2-x≤0B.?x>0,x2-x≤0C.?x≤0,x2-x≤0D.?x>0,x2-x≤0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A={1,3,5,7},B={x|x2-3x-18<0},则A∩B=(  )
A.{1,3}B.{3,5}C.{1,3,5}D.{1,3,5,7}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1的一个焦点坐标是(  )
A.(0,2)B.(2,0)C.($\sqrt{14}$,0)D.(0,$\sqrt{14}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知曲线C1:y=cos x,C2:y=sin (2x+$\frac{2π}{3}$),则下面结论正确的是(  )
A.把C1上各点的横坐标缩短到原来的$\frac{1}{2}$倍,纵坐标不变,再把得到的曲线向右平移$\frac{π}{6}$个单位长度,得到曲线C2
B.把C1上各点的横坐标缩短到原来的$\frac{1}{2}$倍,纵坐标不变,再把得到的曲线向左平移$\frac{π}{12}$个单位长度,得到曲线C2
C.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移$\frac{π}{6}$个单位长度,得到曲线C2
D.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移$\frac{π}{12}$个单位长度,得到曲线C2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\sqrt{3}sin2x+2{cos^2}$x+m在$x∈[{0,\frac{π}{2}}]$上的最大值是6.
(1)求m的值以及函数f(x)的单调增区间;
(2)在△ABC中,角A,B,C的对边分别为a,b,c,f(A)=5,a=4,且△ABC的面积为$\sqrt{3}$,求b+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知 $\overrightarrow{a}$=(-l,3),$\overrightarrow{b}$=(2,-5),若 2$\overrightarrow{a}$+$\overrightarrow{c}$=5$\overrightarrow{b}$,则$\overrightarrow{c}$的坐标为(  )
A.(-10,25)B.(-12,27)C.(10,-26)D.(12,-31)

查看答案和解析>>

同步练习册答案