精英家教网 > 高中数学 > 题目详情
8.在平面直角坐标系中,过点(0,1),倾斜角为45°的直线L,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线E的极坐标方程为ρcos2θ=4sinθ.
(1)将曲线E化为直角坐标方程,并写出直线L的一个参数方程;
(2)直线L与圆x2+(y-1)2=1从左到右交于C,D,直线L与E从左到右 交于A,B,求|AC|+|BD|的值.

分析 (1)由ρcosθ=x,ρsinθ=y,能求出曲线E的直角坐标方程;由直线L过点(0,1),倾斜角为45°,能求出直线L的一个参数方程.
(2)将L的参数方程代入x2=4y中得t2-4$\sqrt{2}$t-8=0,由直线L过圆心,能求出|AC|+|BD|的值.

解答 解:(1)∵曲线E的极坐标方程为ρcos2θ=4sinθ,即ρ2cos2θ=4ρsinθ,
∴曲线E的直角坐标方程为:x2=4y,
∵直线L过点(0,1),倾斜角为45°,
∴直线L的一个参数方程为$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$,(t为参数).5(分)
(2)将L的参数方程代入x2=4y中得t2-4$\sqrt{2}$t-8=0,
$\left\{\begin{array}{l}{{t}_{1}+{t}_{2}=4\sqrt{2}}\\{{t}_{1}{t}_{2}=-8}\end{array}\right.$,直线L过圆心,故|AC|+|BD|=|AB|-2=|t1-t2|-2=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$-2=6.

点评 本题考查曲线的直角坐标方程、直线的参数方程的求法,考查两线段和的求法,考查极坐标方程、直角坐标方程、参数方程的互化,考查推理论证能力、运算求解能力,考查转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知椭圆T:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,直线l经过点P(m,0)与T相交于A、B两点.
(1)若C(0,-$\sqrt{3}$)且|PC|=2,求证:P必为Γ的焦点;
(2)设m>0,若点D在Γ上,且|PD|的最大值为3,求m的值;
(3)设O为坐标原点,若m=$\sqrt{3}$,直线l的一个法向量为$\overrightarrow{n}$=(1,k),求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.直线l过点P(-1,2)且与以点M(-3,-2)、N(4,0)为端点的线段恒相交,则l的斜率取值范围是$({-∞,-\frac{2}{5}}]∪[{2,+∞})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=sin(ωx+φ)(ω>,|φ|<$\frac{π}{2}$),其图象相邻两个对称中心的距离为$\frac{π}{2}$,且f(x+$\frac{π}{6}$)=f(-x),下列判断正确的是 (  )
A.函数f(x)的最小正周期为2π
B.函数f(x)的图象关于点($\frac{7π}{12}$,0)对称
C.函数f(x)在[$\frac{3π}{4}$,π]上单调递增
D.函数f(x)的图象关于直线x=-$\frac{7π}{12}$对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ax-$\frac{b}{x}$-2lnx,对任意实数x>0,都有f(x)=-f($\frac{1}{x}$)成立.
(1)求函数y=f(ex)所有零点之和;
(2)对任意实数x≥1,函数f(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知圆的方程是x2+y2=1,则经过圆上一点M($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$)的切线方程是x+y-$\sqrt{2}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图所示,已知函数y=$\sqrt{2}$sin$\frac{π}{4}$x经过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F,函数y=$\sqrt{2}$sin$\frac{π}{4}$x与双曲线在第一象限交点为P,P的横坐标为3,则双曲线的渐近线方程为(  )
A.x±y=0B.x±2y=0C.x±$\sqrt{3}$y=0D.2x±y=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知向量$\overrightarrow m=({a,1,-b}),\overrightarrow n=({b,1,1})({a>0,b>0})$,若$\overrightarrow m⊥\overrightarrow n$,则$\frac{1}{a}+4b$的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在直角坐标系xOy中,直线l的参数方程为$\left\{{\begin{array}{l}{x=-2+t}\\{y=-4+t}\end{array}}\right.$(t为参数).以原点O为极点,x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρsin2θ=2cosθ.直线l交曲线C于A,B两点.
(1)写出直线l的极坐标方程和曲线C的直角坐标方程;
(2)设点P的直角坐标为(-2,-4),求点P到A,B两点的距离之积.

查看答案和解析>>

同步练习册答案