20£®ÈçͼËùʾ£¬ÒÑÖªº¯Êýy=$\sqrt{2}$sin$\frac{¦Ð}{4}$x¾­¹ýË«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄÓÒ½¹µãF£¬º¯Êýy=$\sqrt{2}$sin$\frac{¦Ð}{4}$xÓëË«ÇúÏßÔÚµÚÒ»ÏóÏÞ½»µãΪP£¬PµÄºá×ø±êΪ3£¬ÔòË«ÇúÏߵĽ¥½üÏß·½³ÌΪ£¨¡¡¡¡£©
A£®x¡Ày=0B£®x¡À2y=0C£®x¡À$\sqrt{3}$y=0D£®2x¡Ày=0

·ÖÎö ÓÉÌâÒ⣬F£¨4£¬0£©£¬P£¨3£¬1£©£¬Ôò$\left\{\begin{array}{l}{\frac{9}{{a}^{2}}-\frac{1}{{b}^{2}}=1}\\{{a}^{2}+{b}^{2}=16}\end{array}\right.$£¬Çó³öa£¬b£¬¼´¿ÉÇó³öË«ÇúÏߵĽ¥½üÏß·½³Ì£®

½â´ð ½â£ºÓÉÌâÒ⣬F£¨4£¬0£©£¬P£¨3£¬1£©£¬
Ôò$\left\{\begin{array}{l}{\frac{9}{{a}^{2}}-\frac{1}{{b}^{2}}=1}\\{{a}^{2}+{b}^{2}=16}\end{array}\right.$£¬¡àa=b=2$\sqrt{2}$£¬
¡àË«ÇúÏߵĽ¥½üÏß·½³ÌΪx¡Ày=0£¬
¹ÊÑ¡A£®

µãÆÀ ±¾Ì⿼²éË«ÇúÏߵķ½³ÌÓëÐÔÖÊ£¬¿¼²éÈý½Çº¯ÊýµÄͼÏóÓëÐÔÖÊ£¬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®º¯Êýf£¨x£©=sin£¨¦Ðx+¦È£©£¨|¦È|£¼$\frac{¦Ð}{2}$£©µÄ²¿·ÖͼÏóÈçͼ£¬ÇÒf£¨0£©=-$\frac{1}{2}$£¬ÔòͼÖÐmµÄֵΪ£¨¡¡¡¡£©
A£®1B£®$\frac{4}{3}$C£®2D£®$\frac{4}{3}$»ò2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÔÚ¡÷ABCÖУ¬ÄÚ½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬ÒÑÖªatanB=2bsinA£®
£¨1£©ÇóB£»
£¨2£©Èôb=$\sqrt{3}$£¬A=$\frac{5¦Ð}{12}$£¬Çó¡÷ABCµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬¹ýµã£¨0£¬1£©£¬Çãб½ÇΪ45¡ãµÄÖ±ÏßL£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßEµÄ¼«×ø±ê·½³ÌΪ¦Ñcos2¦È=4sin¦È£®
£¨1£©½«ÇúÏßE»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬²¢Ð´³öÖ±ÏßLµÄÒ»¸ö²ÎÊý·½³Ì£»
£¨2£©Ö±ÏßLÓëÔ²x2+£¨y-1£©2=1´Ó×óµ½ÓÒ½»ÓÚC£¬D£¬Ö±ÏßLÓëE´Ó×óµ½ÓÒ ½»ÓÚA£¬B£¬Çó|AC|+|BD|µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®¸´Êýz=£¨a2-1£©+£¨a-1£©i£¨a¡ÊR£©Îª´¿ÐéÊý£¬Ôòz=£¨¡¡¡¡£©
A£®iB£®-2iC£®2iD£®-i

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$=£¨2£¬m£©£¬$\overrightarrow{b}$=£¨-1£¬2£©£¬Èô$\overrightarrow{a}$¡Í$\overrightarrow{b}$£¬Ôò$\overrightarrow{a}$ÔÚÏòÁ¿$\overrightarrow{c}$=$\overrightarrow{a}$+$\overrightarrow{b}$ÉϵÄͶӰΪ£¨¡¡¡¡£©
A£®$\frac{\sqrt{5}}{2}$B£®-$\frac{\sqrt{10}}{2}$C£®-$\frac{\sqrt{5}}{2}$D£®$\frac{\sqrt{10}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®¡°x£¼3¡±ÊÇ¡°ln£¨x-2£©£¼0¡±µÄ£¨¡¡¡¡£©
A£®³ä·Ö²»±ØÒªÌõ¼þB£®±ØÒª²»³ä·ÖÌõ¼þ
C£®³ä·Ö±ØÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑ֪˫ÇúÏß${C_1}£º\frac{x^2}{6}-\frac{y^2}{2}=1$ÓëË«ÇúÏß${C_2}£º\frac{x^2}{a^2}-\frac{y^2}{b^2}=1£¨{a£¾0£¬b£¾0}£©$µÄÀëÐÄÂÊÏàͬ£¬ÇÒË«ÇúÏßC2µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬MÊÇË«ÇúÏßC2Ò»Ìõ½¥½üÏßÉϵÄijһµã£¬ÇÒOM¡ÍMF2£¬${S_{¡÷OM{F_2}}}=8\sqrt{3}$£¬ÔòË«ÇúÏßC2µÄʵÖ᳤Ϊ£¨¡¡¡¡£©
A£®4B£®$4\sqrt{3}$C£®8D£®$8\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Èçͼ1£¬ÁâÐÎABCDµÄ±ß³¤Îª12£¬¡ÏBAD=60¡ã£¬AC½»BDÓÚµãO£®½«ÁâÐÎABCDÑØ¶Ô½ÇÏßACÕÛÆð£¬µÃµ½ÈýÀâ×¶B-ACD£¬µãM£¬N·Ö±ðÊÇÀâBC£¬ADµÄÖе㣬ÇÒDM=6$\sqrt{2}$£®

£¨¢ñ£©ÇóÖ¤£ºOD¡ÍÆ½ÃæABC£»
£¨¢ò£©ÇóÈýÀâ×¶M-ABNµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸