分析 (Ⅰ)由ABCD是菱形,可得AD=DC,OD⊥AC,求解三角形可得OD=6,结合M是BC的中点,求出OM、MD,可得OD2+OM2=MD2,得DO⊥OM,由线面垂直的判定可得OD⊥面ABC;
(Ⅱ)取线段AO的中点E,连接NE.可得NE∥DO.由(Ⅰ)得OD⊥面ABC,可得NE⊥面ABC,求出△ABM的面积,然后利用等积法求得三棱锥M-ABN的体积.
解答
(Ⅰ)证明:∵ABCD是菱形,∴AD=DC,OD⊥AC,
在△ADC中,AD=DC=12,∠ADC=120°,∴OD=6,
又M是BC的中点,∴$OM=\frac{1}{2}AB=6,MD=6\sqrt{2}$,
∵OD2+OM2=MD2,则DO⊥OM,
∵OM,AC?面ABC,OM∩AC=O,
∴OD⊥面ABC;
(Ⅱ)解:取线段AO的中点E,连接NE.
∵N是棱AD的中点,∴NE=$\frac{1}{2}DO$且NE∥DO.
由(Ⅰ)得OD⊥面ABC,∴NE⊥面ABC,
在△ABM中,AB=12,BM=6,∠ABM=120°,
∴${S}_{△ABM}=\frac{1}{2}•AB•BM•sin∠ABM$=$\frac{1}{2}×12×6×\frac{\sqrt{3}}{2}=18\sqrt{3}$.
∴${V_{M-ABN}}=\frac{1}{2}{V_{M-ABD}}=\frac{1}{2}{V_{D-ABM}}=\frac{1}{2}•\frac{1}{3}{S_{△ABM}}•OD=18\sqrt{3}$.
点评 本题考查直线与平面垂直的判定,考查空间想象能力和思维能力,训练了利用等积法求多面体的体积,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | x±y=0 | B. | x±2y=0 | C. | x±$\sqrt{3}$y=0 | D. | 2x±y=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 试销单价x(元) | 4 | 5 | 6 | 7 | 8 | 9 |
| 产品销量y(件) | q | 84 | 83 | 80 | 75 | 68 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{CE}=\frac{2}{9}\overrightarrow{AB}+\frac{8}{9}\overrightarrow{AC}$ | B. | $\overrightarrow{CE}=\frac{2}{9}\overrightarrow{AB}-\frac{8}{9}\overrightarrow{AC}$ | C. | $\overrightarrow{CE}=\frac{2}{9}\overrightarrow{AB}+\frac{7}{9}\overrightarrow{AC}$ | D. | $\overrightarrow{CE}=\frac{2}{9}\overrightarrow{AB}-\frac{7}{9}\overrightarrow{AC}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com