18£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=-2+t}\\{y=-4+t}\end{array}}\right.$£¨tΪ²ÎÊý£©£®ÒÔÔ­µãOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñsin2¦È=2cos¦È£®Ö±Ïßl½»ÇúÏßCÓÚA£¬BÁ½µã£®
£¨1£©Ð´³öÖ±ÏßlµÄ¼«×ø±ê·½³ÌºÍÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÉèµãPµÄÖ±½Ç×ø±êΪ£¨-2£¬-4£©£¬ÇóµãPµ½A£¬BÁ½µãµÄ¾àÀëÖ®»ý£®

·ÖÎö £¨1£©ÓÉÖ±ÏßlµÄ²ÎÊý·½³ÌÏûÈ¥²ÎÊý£¬µÃlµÄÆÕͨ·½³Ì£¬ÓÉ´ËÄÜÇó³öÖ±ÏßlµÄ¼«×ø±ê·½³Ì£¬ÓÉÇúÏßCµÄ¼«×ø±ê·½³Ì£¬ÄÜÇó³öÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£®
£¨2£©Çó³öÖ±ÏßlµÄ²ÎÊý·½³Ì£¬²¢´úÈëy2=2x£¬µÃ${T^2}-10\sqrt{2}T+40=0$£¬ÓÉ´ËÄÜÇó³ö|PA|•|PB|µÄÖµ£®

½â´ð ½â£º£¨1£©ÓÉÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=-2+t}\\{y=-4+t}\end{array}}\right.$£¨tΪ²ÎÊý£©£¬
ÏûÈ¥²ÎÊýºÍ£¬µÃlµÄÆÕͨ·½³ÌΪx-y-2=0£®
¡àÖ±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñcos¦È-¦Ñsin¦È-2=0£®
¡ßÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñsin2¦È=2cos¦È£¬¼´¦Ñ2sin2¦È=2¦Ñcos¦È
¡àÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪy2=2x£®
£¨2£©¡ßÖ±Ïßl£ºx-y-2=0¾­¹ýµãP£¨-2£¬-4£©£¬
¡àÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=-2+\frac{{\sqrt{2}}}{2}T}\\{y=-4+\frac{{\sqrt{2}}}{2}T}\end{array}}\right.$£¨TΪ²ÎÊý£©£®
½«Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=-2+\frac{{\sqrt{2}}}{2}T}\\{y=-4+\frac{{\sqrt{2}}}{2}T}\end{array}}\right.$´úÈëy2=2x£¬
»¯¼òµÃ${T^2}-10\sqrt{2}T+40=0$£¬
¡à|PA|•|PB|=|T1T2|=40£®

µãÆÀ ±¾Ì⿼²éÖ±Ïߵļ«×ø±ê·½³ÌºÍÇúÏßÖ±½Ç×ø±ê·½³ÌµÄÇ󷨣¬¿¼²éÁ½Ï߶λýµÄÇ󷨣¬¿¼²é¼«×ø±ê·½³Ì¡¢Ö±½Ç×ø±ê·½³Ì¡¢²ÎÊý·½³ÌµÄ»¥»¯£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²éת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬¹ýµã£¨0£¬1£©£¬Çãб½ÇΪ45¡ãµÄÖ±ÏßL£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßEµÄ¼«×ø±ê·½³ÌΪ¦Ñcos2¦È=4sin¦È£®
£¨1£©½«ÇúÏßE»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬²¢Ð´³öÖ±ÏßLµÄÒ»¸ö²ÎÊý·½³Ì£»
£¨2£©Ö±ÏßLÓëÔ²x2+£¨y-1£©2=1´Ó×óµ½ÓÒ½»ÓÚC£¬D£¬Ö±ÏßLÓëE´Ó×óµ½ÓÒ ½»ÓÚA£¬B£¬Çó|AC|+|BD|µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑ֪˫ÇúÏß${C_1}£º\frac{x^2}{6}-\frac{y^2}{2}=1$ÓëË«ÇúÏß${C_2}£º\frac{x^2}{a^2}-\frac{y^2}{b^2}=1£¨{a£¾0£¬b£¾0}£©$µÄÀëÐÄÂÊÏàͬ£¬ÇÒË«ÇúÏßC2µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬MÊÇË«ÇúÏßC2Ò»Ìõ½¥½üÏßÉϵÄijһµã£¬ÇÒOM¡ÍMF2£¬${S_{¡÷OM{F_2}}}=8\sqrt{3}$£¬ÔòË«ÇúÏßC2µÄʵÖ᳤Ϊ£¨¡¡¡¡£©
A£®4B£®$4\sqrt{3}$C£®8D£®$8\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Èçͼ£¬Ò»»·Ðλ¨Ì³·Ö³ÉA£¬B£¬C£¬DËĿ飬ÏÖÓÐ3ÖÖ²»Í¬µÄ»¨¹©Ñ¡ÖÖ£¬ÒªÇóÔÚÿ¿éÀïÖÖÒ»ÖÖ»¨£¬ÇÒÏàÁÚµÄ2¿éÖÖ²»Í¬µÄ»¨£¬Ôò²»Í¬µÄÖÖ·¨×ÜÊýΪ£¨¡¡¡¡£©
A£®12B£®24C£®18D£®6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªº¯Êýf£¨x£©=|lnx-$\frac{a}{x}$|+b£¬ÆäÖÐa£¬b¡ÊRÇÒa£¾2£¬Èôf£¨2£©=$\frac{e}{2}$-ln2+1£¬f£¨x£©ÔÚ£¨1£¬f£¨1£©£©´¦ÇÐÏßµÄбÂÊΪ-e-1£®
£¨1£©Çóº¯Êýf£¨x£©µÄ½âÎöʽ¼°Æäµ¥µ÷Çø¼ä£»
£¨2£©ÈôʵÊýc£¬dÂú×ãcd=¦Ë£¬ÇÒf£¨c£©£¼f£¨d£©¶ÔÓÚÈÎÒâc£¾dºã³ÉÁ¢£¬ÇóʵÊý¦ËµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÔÚÏÂÁÐÇø¼äÖУ¬º¯Êýf£¨x£©=e-x+4x-3µÄÁãµãËùÔÚµÄÇø¼äΪ£¨¡¡¡¡£©
A£®£¨-$\frac{1}{4}$£¬0£©B£®£¨0£¬$\frac{1}{4}$£©C£®£¨$\frac{1}{4}$£¬$\frac{1}{2}$£©D£®£¨$\frac{1}{2}$£¬$\frac{3}{4}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Èçͼ1£¬ÁâÐÎABCDµÄ±ß³¤Îª12£¬¡ÏBAD=60¡ã£¬AC½»BDÓÚµãO£®½«ÁâÐÎABCDÑØ¶Ô½ÇÏßACÕÛÆð£¬µÃµ½ÈýÀâ×¶B-ACD£¬µãM£¬N·Ö±ðÊÇÀâBC£¬ADµÄÖе㣬ÇÒDM=6$\sqrt{2}$£®

£¨¢ñ£©ÇóÖ¤£ºOD¡ÍÆ½ÃæABC£»
£¨¢ò£©ÇóÈýÀâ×¶M-ABNµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®É踴ÊýzÂú×ã$\frac{i}{1-i}$•z=1£¬Ôò|z|=£¨¡¡¡¡£©
A£®1B£®5C£®$\sqrt{2}$D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖª¼¯ºÏA={x|y=lgx}£¬B={x|x-1¡Ü0}£¬ÔòA¡ÉB=£¨¡¡¡¡£©
A£®£¨0£¬1]B£®£¨0£¬1£©C£®£¨-1£¬1]D£®[1£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸