精英家教网 > 高中数学 > 题目详情
3.在下列区间中,函数f(x)=e-x+4x-3的零点所在的区间为(  )
A.(-$\frac{1}{4}$,0)B.(0,$\frac{1}{4}$)C.($\frac{1}{4}$,$\frac{1}{2}$)D.($\frac{1}{2}$,$\frac{3}{4}$)

分析 利用函数的零点判定定理判断求解即可.

解答 解:函数f(x)=e-x+4x-3是连续函数,因为f($\frac{1}{2}$)=$\frac{1}{\sqrt{e}}$-1<0,
f($\frac{3}{4}$)=$\frac{1}{\root{4}{{e}^{3}}}$+3-3>0,所以f($\frac{1}{2}$)f($\frac{3}{4}$)<0,
故选:D.

点评 本题考查函数的判定定理的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知圆的方程是x2+y2=1,则经过圆上一点M($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$)的切线方程是x+y-$\sqrt{2}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.点P是椭圆上任意一点,F1,F2分别是椭圆的左右焦点,∠F1PF2的最大值是60°,则椭圆的离心率的值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=-2+t}\\{y=\sqrt{3}t}\end{array}\right.$(t为参数),若以该直角坐标系的原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ+4cosθ=0.
(Ⅰ)求直线l与曲线C的普通方程;
(Ⅱ)已知直线l与曲线C交于A,B两点,设M(-2,0),求|$\frac{1}{|MA|}$-$\frac{1}{|MB|}$|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在直角坐标系xOy中,直线l的参数方程为$\left\{{\begin{array}{l}{x=-2+t}\\{y=-4+t}\end{array}}\right.$(t为参数).以原点O为极点,x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρsin2θ=2cosθ.直线l交曲线C于A,B两点.
(1)写出直线l的极坐标方程和曲线C的直角坐标方程;
(2)设点P的直角坐标为(-2,-4),求点P到A,B两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.三棱锥A-BCD中,AD⊥平面BCD,AD=1,△BCD是边长为2的等边三角形,则该几何体外接球的表面积为(  )
A.$\frac{17}{6}π$B.$\frac{19}{6}π$C.$\frac{17}{3}π$D.$\frac{19}{3}π$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.“大众创业,万众创新”是李克强总理在本届政府工作报告中向全国人民发出的口号.某生产企业积极响应号召,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据(xi,yi)(i=1,2,…,6),如表所示:
试销单价x(元)456789
产品销量y(件)q8483807568
已知$\overline{y}$=$\frac{1}{6}$$\sum_{i=1}^{6}{y}_{i}$=80
(Ⅰ)求出q的值;
(Ⅱ)已知变量x,y具有线性相关关系,求产品销量y(件)关于试销单价x(元)的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\overrightarrow{a}$
(Ⅲ)用$\stackrel{∧}{{y}_{i}}$表示用正确的线性回归方程得到的与xi对应的产品销量的估计值.当销售数据(xi,yi)的残差的绝对值|$\stackrel{∧}{{y}_{i}}$-yi|≤1时,则将销售数据(xi,yi)称为一个“好数据”.现从6个销售数据中任取2个,求抽取的2个销售数据中至少有一个是“好数据”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知f(x)是定义在R上的可导函数,且满足(x+1)f(x)+xf'(x)>0,则(  )
A.f(x)>0B.f(x)<0C.f(x)为减函数D.f(x)为增函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知区域D:{(x,y)||y|≤|x|},则(  )
A.?x0>0,(x0,$\frac{1}{2}$)∈DB.?x0>0,(x0,$\frac{1}{2}$x0)∉DC.?x0>0,(x0,$\frac{1}{2}$)∈DD.?x0>0,(x0,$\frac{1}{2}$x0)∉D

查看答案和解析>>

同步练习册答案