精英家教网 > 高中数学 > 题目详情
8.三棱锥A-BCD中,AD⊥平面BCD,AD=1,△BCD是边长为2的等边三角形,则该几何体外接球的表面积为(  )
A.$\frac{17}{6}π$B.$\frac{19}{6}π$C.$\frac{17}{3}π$D.$\frac{19}{3}π$

分析 由已知结合三棱锥和正三棱柱的几何特征,可得此三棱锥外接球,即为以△BCD为底面以DA为高的正三棱柱的外接球,分别求出棱锥底面半径r,和球心距d,可得球的半径R,即可求出三棱锥A-BCD外接球的表面积.

解答 解:根据已知中底面△BCD是边长为2的正三角形,DA⊥平面BCD,
可得此三棱锥外接球,即为以△BCD为底面以DA为高的正三棱柱的外接球
∵△BCD是边长为2的正三角形,
∴△BCD的外接圆半径r=$\frac{2}{\sqrt{3}}$,
球心到△BCD的外接圆圆心的距离d=$\frac{1}{2}$,R=$\sqrt{\frac{4}{3}+\frac{1}{4}}=\sqrt{\frac{19}{12}}$,
故三棱锥A-BCD外接球的表面积S=4πR2=$\frac{19π}{3}$.
故选:D

点评 本题考查的知识点是球内接多面体,正确求出球的半径R是解答的关键.属于中档题,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.函数f(x)=x3+x2+5ax-1存在极值点的充要条件是(  )
A.a$≤\frac{1}{15}$B.a<$\frac{1}{15}$C.a$≥\frac{1}{15}$D.a>$\frac{1}{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=2ex-2-2ax-x2(x≥0)
(1)当a=1时,求f(x)的单调区间,并证明此时f(x)≥0成立;
(2)若f(x)≥0在x∈[0,+∞)上恒成立,求a 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.要得到函数$y=\frac{1}{2}cos2x$的图象,只需将函数$y=\frac{1}{2}sin2x$的图象(  )
A.向右平移$\frac{π}{2}$个单位B.向右平移$\frac{π}{4}$个单位
C.向左平移$\frac{π}{2}$个单位D.向左平移$\frac{π}{4}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在下列区间中,函数f(x)=e-x+4x-3的零点所在的区间为(  )
A.(-$\frac{1}{4}$,0)B.(0,$\frac{1}{4}$)C.($\frac{1}{4}$,$\frac{1}{2}$)D.($\frac{1}{2}$,$\frac{3}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知偶函数f(x)是定义在R上的可导函数,其导函数为f′(x),当x<0时有2f(x)+xf′(x)>x2,则不等式(x+2017)2f(x+2017)-f(-1)<0的解集为(  )
A.(-∞,-2016)B.(-2018,-2016)
C.(-2018,+∞)D.(-∞,-2018)∪(-2016,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在区间[-3,3]上随机选取一个实数x,则事件“2x-3<0”发生的概率是(  )
A.$\frac{4}{5}$B.$\frac{3}{4}$C.$\frac{2}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知△ABC的顶点A(1,0),点B在x轴上移动,|AB|=|AC|,且BC的中点在y轴上.
(Ⅰ)求C点的轨迹Γ的方程;
(Ⅱ)已知过P(0,-2)的直线l交轨迹Γ于不同两点M,N,求证:Q(1,2)与M,N两点连线QM,QN的斜率之积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某几何体的三视图如图,则该几何体的体积为(  )
A.18B.20C.24D.12

查看答案和解析>>

同步练习册答案