精英家教网 > 高中数学 > 题目详情
8.已知集合A={x|y=lgx},B={x|x-1≤0},则A∩B=(  )
A.(0,1]B.(0,1)C.(-1,1]D.[1,+∞)

分析 先分别求出集合A和B,由此能求出A∩B.

解答 解:∵集合A={x|y=lgx}={x|x>0},
B={x|x-1≤0}={x|x≤1},
∴A∩B={x|0<x≤1}=(0,1].
故选:A.

点评 本题考查交集的求法,考查函数性质、不等式的解法,考查推理论证能力、运算求解能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.在直角坐标系xOy中,直线l的参数方程为$\left\{{\begin{array}{l}{x=-2+t}\\{y=-4+t}\end{array}}\right.$(t为参数).以原点O为极点,x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρsin2θ=2cosθ.直线l交曲线C于A,B两点.
(1)写出直线l的极坐标方程和曲线C的直角坐标方程;
(2)设点P的直角坐标为(-2,-4),求点P到A,B两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,在△ABC中,点D在BC边上,且CD=2DB,点E在AD边上,且AD=3AE,则用向量$\overrightarrow{AB},\overrightarrow{AC}$表示$\overrightarrow{CE}$为(  )
A.$\overrightarrow{CE}=\frac{2}{9}\overrightarrow{AB}+\frac{8}{9}\overrightarrow{AC}$B.$\overrightarrow{CE}=\frac{2}{9}\overrightarrow{AB}-\frac{8}{9}\overrightarrow{AC}$C.$\overrightarrow{CE}=\frac{2}{9}\overrightarrow{AB}+\frac{7}{9}\overrightarrow{AC}$D.$\overrightarrow{CE}=\frac{2}{9}\overrightarrow{AB}-\frac{7}{9}\overrightarrow{AC}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.$({{x^2}+1}){({\frac{1}{{\sqrt{x}}}-2})^5}$的展开式的常数项是(  )
A.5B.-10C.-32D.-42

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知实数x,y满足$\left\{\begin{array}{l}x≥0\\ x≤y\\ x+y≥2\end{array}\right.$,则z=2x+y的最小值是(  )
A.0B.2C.3D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知区域D:{(x,y)||y|≤|x|},则(  )
A.?x0>0,(x0,$\frac{1}{2}$)∈DB.?x0>0,(x0,$\frac{1}{2}$x0)∉DC.?x0>0,(x0,$\frac{1}{2}$)∈DD.?x0>0,(x0,$\frac{1}{2}$x0)∉D

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知$|{\overrightarrow a}|=1,|{\overrightarrow b}|=2$,$|{\overrightarrow a-2\overrightarrow b}|=\sqrt{13}$,则$\overrightarrow a$与$\overrightarrow b$的夹角为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A,B,C的对边分别为a,b,c,已知$\frac{a}{b}=\frac{cosB}{cosA}$,a=4,c=5.
(1)求边b的长;
(2)若$\frac{a}{b}>1$,点E,F分别在线段AB,AC上,当${S_{△AEF}}=\frac{1}{2}{S_{△ABC}}$时,求△AEF周长l的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+x(-2≤x<0)}\\{{x}^{\frac{1}{2}}(0≤x≤9)}\end{array}\right.$,若方程f(x)-a=0有两个解,则a的取值范围是(-$\frac{1}{4}$,2].

查看答案和解析>>

同步练习册答案