精英家教网 > 高中数学 > 题目详情
17.在△ABC中,角A,B,C的对边分别为a,b,c,已知$\frac{a}{b}=\frac{cosB}{cosA}$,a=4,c=5.
(1)求边b的长;
(2)若$\frac{a}{b}>1$,点E,F分别在线段AB,AC上,当${S_{△AEF}}=\frac{1}{2}{S_{△ABC}}$时,求△AEF周长l的最小值.

分析 (1)根据题意,由正弦定理以及二倍角公式可得sin2A=sin2B,分析可得A=B或$A+B=\frac{π}{2}$,分2种情况讨论可得答案;
(2)根据题意,分析可得AE•AF=$\frac{1}{2}bc=\frac{15}{2}$,结合余弦定理可得EF=$\sqrt{A{E^2}+A{F^2}-9}$,进而可得周长l=(AE+AF)$+\sqrt{A{E^2}+A{F^2}-9}$,由基本不等式分析可得答案.

解答 解:(1)根据题意$\frac{a}{b}=\frac{cosB}{cosA}$,则有acosA=bcosB,
由正弦定理得sinAcosA=sinBcosB,
即sin2A=sin2B,∴A=B或$A+B=\frac{π}{2}$
当$A+B=\frac{π}{2}$时,△ACB为直角三角形,且C=$\frac{π}{2}$,易知b=3.
当A=B时,△ABC为等腰三角形且a=b,b=4.
(2)依题可知:a>b,∴$∠C=\frac{π}{2}$,b=3,$cosA=\frac{3}{5}$.
依题:$\frac{1}{2}AE•AF•sinA$=$\frac{1}{2}•\frac{1}{2}bc•sinA$⇒AE•AF=$\frac{1}{2}bc=\frac{15}{2}$.
由余弦定理$EF=\sqrt{A{E^2}+A{F^2}-2AE•AFcosA}$=$\sqrt{A{E^2}+A{F^2}-9}$,
周长l=(AE+AF)$+\sqrt{A{E^2}+A{F^2}-9}$$≥2\sqrt{AE•AF}$$+\sqrt{2AE•AF-9}$=$\sqrt{30}+\sqrt{6}$.
当$AE=AF=\frac{{\sqrt{30}}}{2}$时,等号成立.

点评 本题考查三角形的几何计算,涉及三角函数的恒等变形,关键是熟悉三角函数的恒等变形公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设复数z满足$\frac{i}{1-i}$•z=1,则|z|=(  )
A.1B.5C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={x|y=lgx},B={x|x-1≤0},则A∩B=(  )
A.(0,1]B.(0,1)C.(-1,1]D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=(x-a)2lnx,a∈R.
(1)若$a=3\sqrt{e}$,其中e为自然对数的底数,求函数$g(x)=\frac{f(x)}{x}$的单调区间;
(2)若函数f(x)既有极大值,又有极小值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知边长为2 的菱形ABCD中,∠BAD=120°,若$\overrightarrow{AP}$=λ$\overrightarrow{AC}$(0<λ<1),则$\overrightarrow{BP}$•$\overrightarrow{PD}$的取值范围为(  )
A.[0,3]B.[2,3]C.(0,3]D.(2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=|{x+\frac{1}{x}}$|(x≠0)
(1)求不等式f(x)<|x-1|的解集;
(2)若对?x∈(-∞,0)∪(0,+∞),不等式f(x)>|x-a|-|1+x|恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.将周期为π的函数f(x)=2sin(ωx+$\frac{π}{3}$),(ω>0)的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是(  )
A.$\frac{5π}{12}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知三棱锥S-ABC的三条侧棱相等,体积为$\frac{\sqrt{3}}{4}$,AB=BC=$\sqrt{3}$,∠ACB=30°,则三棱锥S-ABC外接球的体积为$\frac{32}{3}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知D,E是△ABC边BC的三等分点,点P在线段DE上,若$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,则xy的取值范围是(  )
A.[$\frac{1}{9}$,$\frac{4}{9}$]B.[$\frac{1}{9}$,$\frac{1}{4}$]C.[$\frac{2}{9}$,$\frac{1}{2}$]D.[$\frac{2}{9}$,$\frac{1}{4}$]

查看答案和解析>>

同步练习册答案