精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+x(-2≤x<0)}\\{{x}^{\frac{1}{2}}(0≤x≤9)}\end{array}\right.$,若方程f(x)-a=0有两个解,则a的取值范围是(-$\frac{1}{4}$,2].

分析 画出f(x)的图象,由二次函数及幂函数的性质求得f(x)的取值范围,即可求得a的取值范围.

解答 解:由-2≤x<0,f(x)=x2+x,对称轴x=-$\frac{1}{2}$,
则-2≤x<-$\frac{1}{2}$时,f(x)单调递减,-$\frac{1}{2}$<x<0,f(x)单调递增,
当x=-2时,取最大值,最大值为2,当x=-$\frac{1}{2}$时取最小值,最小值为-$\frac{1}{4}$,
当0≤x≤9时,f(x)=${x}^{\frac{1}{2}}$,f(x)在[0,9]上单调递增,
若方程f(x)-a=0有两个解,则f(x)=a与f(x)有两个交点,
则a的取值范围(-$\frac{1}{4}$,2],
∴a的取值范围(-$\frac{1}{4}$,2],
故答案为:(-$\frac{1}{4}$,2].

点评 本题考查二次函数的及幂函数图象与性质,考查分段函数的单调性,考查数形结合思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知集合A={x|y=lgx},B={x|x-1≤0},则A∩B=(  )
A.(0,1]B.(0,1)C.(-1,1]D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.将周期为π的函数f(x)=2sin(ωx+$\frac{π}{3}$),(ω>0)的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是(  )
A.$\frac{5π}{12}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知三棱锥S-ABC的三条侧棱相等,体积为$\frac{\sqrt{3}}{4}$,AB=BC=$\sqrt{3}$,∠ACB=30°,则三棱锥S-ABC外接球的体积为$\frac{32}{3}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在正方体ABCD-A1B1C1D1中,E、F分别是BC、A1D1的中点.
(1)求证:四边形B1EDF是菱形;
(2)求异面直线A1C与DE所成的角 (结果用反三角函数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.直线l与曲线y=ex相切于点A(0,1),直线l的方程是x-y+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}满足:a1=3,an+1=a${\;}_{n}^{2}$-nan+1.
(Ⅰ)求a2,a3的值;
(Ⅱ)猜测an与n+2的大小关系,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知D,E是△ABC边BC的三等分点,点P在线段DE上,若$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,则xy的取值范围是(  )
A.[$\frac{1}{9}$,$\frac{4}{9}$]B.[$\frac{1}{9}$,$\frac{1}{4}$]C.[$\frac{2}{9}$,$\frac{1}{2}$]D.[$\frac{2}{9}$,$\frac{1}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.下表是某校高三一次月考5个班级的数学、物理的平均成绩:
班级12345
数学(x分)111113119125127
物理(y分)92939699100
(Ⅰ)一般来说,学生的物理成绩与数学成绩具有线性相关关系,根据上表提供的数据,求两个变量x,y的线性回归方程$\hat y=\hat bx+\hat a$;
(Ⅱ)从以上5个班级中任选两个参加某项活动,求至少有一个班级数学平均分在115分以上的概率.
附:$\hat b=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

同步练习册答案