精英家教网 > 高中数学 > 题目详情
17.求证:
(1)如果a>b,ab>0,那么$\frac{1}{a}$<$\frac{1}{b}$;
(2)如果a>b>0,c<d<0,那么ac<bd.

分析 (1)由a>b,ab>0,可得$\frac{a}{ab}>\frac{b}{ab}$,即可证明;
(2))c<d<0,可得-c>-d>0.再利用不等式的基本性质即可得出.

解答 证明:(1)∵a>b,ab>0,∴$\frac{a}{ab}>\frac{b}{ab}$,化为$\frac{1}{b}$$>\frac{1}{a}$,即$\frac{1}{a}$<$\frac{1}{b}$;
(2)∵c<d<0,
∴-c>-d>0.
又∵a>b>0,
∴-ac>-bd,
∴ac<bd.

点评 本题查克拉不等式的基本性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.在等差数列{an}中,若a3+a4+a5+a6+a7=20,则a5=(  )
A.10B.6C.5D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列各函数中,值域为[0,+∞)的是(  )
A.y=2-$\frac{x}{2}$B.y=$\sqrt{1-2x}$C.y=x2+x+1D.y=$\frac{1}{x+1}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知点P为曲线C:y=x3-x上一点,曲线C在点P处的切线l1交曲线C于点Q(异于点P),若直线l1的斜率为k1,曲线C在点Q处的切线l2的斜率为k2,则4k1-k2的值为(  )
A.-5B.-4C.-3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列说法正确的是(  )
A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”
B.已知y=f(x)是R上的可导函数,则“f′(x0)=0”是“x0是函数y=f(x)的极值点”的必要不充分条件
C.命题“存在x∈R,使得x2+x+1<0”的否定是:“对任意x∈R,均有x2+x+1<0”
D.命题“角α的终边在第一象限角,则α是锐角”的逆否命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.下列说法中正确的是:②③④
①函数$y={x^{-\frac{3}{2}}}$的定义域是{x|x≠0};
②方程x2+(a-3)x+a=0的有一个正实根,一个负实根,则a<0;
③函数y=lg$\frac{1-x}{1+x}$在定义域上为奇函数;
④函数y=loga(2x-5)-2,(a>0,且a≠1)恒过定点(3,-2);
⑤若3x+3-x=2$\sqrt{2}$,则3x-3-x的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{a{x}^{2}+x-a}{{x}^{2}-x+1}$,a∈R.
(1)若a=0,试求函数f(x)的值域;
(2)若不等式f(x)>0的解集为{x|-$\frac{1}{2}$<x<2},求实数a的值;
(3)解不等式f(x)>1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f(x)是定义在区间[-1,1]上的增函数,且f(x-1)<f(1-3x),则x的取值范围是[0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.不等式${2^{3x-2}}>\frac{1}{2}$的解集为($\frac{1}{3}$,+∞).

查看答案和解析>>

同步练习册答案