精英家教网 > 高中数学 > 题目详情

【题目】已知圆与圆.

(1)求证两圆相交;

(2)求两圆公共弦所在直线的方程;

(3)求过两圆的交点且圆心在直线上的圆的方程.

【答案】(1)证明见解析;(2);(3).

【解析】试题分析:(1)将圆的方程化为标准方程,求出圆心距及半径,即可证明两圆相交;

(2)对两圆的方程作差即可得出两圆的公共弦所在的直线方程;

(3)先求两圆的交点,进而可求圆的圆心与半径,从而可求圆的方程.

试题解析:

(1)证明:圆与圆化为标准方程分别为圆与圆,

与圆,半径都为

圆心距为两圆相交.

(2)解:将两圆的方程作差即可得出两圆的公共弦所在的直线方程,即

,

.

(3)解:由(2)得代入圆,化简可得,时,;当时,设所求圆的圆心坐标为,则

,

,

过两圆的交点且圆心在直线上的圆的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)过原点作曲线的切线,求直线的方程;

(Ⅱ)个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三()班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题.

(1)求全班人数及分数在之间的频数,并估计该班的平均分数;

(2)若要从分数在之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知曲线C的参数方程为 (α为参数),以直角坐标系原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标轴方程为ρcos(θ﹣ )=2
(1)求曲线C的普通方程与直线l的直角坐标方程;
(2)设点P为曲线C上的动点,求点P到直线l距离的最大值及其对应的点P的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若不等式|2x﹣1|﹣|x+a|≥a对任意的实数x恒成立,则实数a的取值范围是(
A.(﹣∞,﹣ ]
B.(﹣ ,﹣ ]
C.(﹣ ,0)
D.(﹣∞,﹣ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点,焦点在轴上,离心率为的椭圆过点

1)求椭圆的方程;

2)设不过原点的直线与该椭圆交于两点,满足直线的斜率依次成等比数列,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了了解一年内的用水情况,抽取了10天的用水量如下表所示:

天数

1

1

1

2

2

1

2

用水量/吨

22

38

40

41

44

50

95

(Ⅰ)在这10天中,该公司用水量的平均数是多少?每天用水量的中位数是多少?

(Ⅱ)你认为应该用平均数和中位数中的哪一个数来描述该公司每天的用水量?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】{an}{bn}是两个等差数列,cn=max{b1-a1n,b2-a2n,…,bn-ann}(n=1,2,3,…),其中max{x1,x2,…,xs}表示x1,x2,…,xss个数中最大的数.

()an=n,bn=2n-1,c1,c2,c3的值,并证明{cn}是等差数列;

()证明:或者对任意正数M,存在正整数m,nm, >M;或者存在正整数m,使得cm,cm+1,cm+2,…是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】先后抛掷两枚骰子,设出现的点数之和是12,11,10的概率依次是P1,P2,P3,则(

(A)P1=P2<P3 (B)P1<P2<P3 (C)P1<P2=P3 (D)P3=P2<P1

查看答案和解析>>

同步练习册答案