分析 设∠ACB=2θ,可得$\overrightarrow{CA}$•$\overrightarrow{CB}$=4cos2θ.设P$({x}_{0},\frac{{x}_{0}^{2}}{4})$,可得|CP|2=${x}_{0}^{2}$+$(\frac{{x}_{0}^{2}}{4}-3)^{2}$=$\frac{1}{16}({x}_{0}^{2}-4)^{2}$+8,利用二次函数的性质可得其最小值,根据2θ的取值范围即可得出.
解答 解:设∠ACB=2θ,
则$\overrightarrow{CA}$•$\overrightarrow{CB}$=4cos2θ.
设P$({x}_{0},\frac{{x}_{0}^{2}}{4})$,
则|CP|2=${x}_{0}^{2}$+$(\frac{{x}_{0}^{2}}{4}-3)^{2}$=$\frac{{x}_{0}^{4}}{16}$-$\frac{{x}_{0}^{2}}{2}$+9=$\frac{1}{16}({x}_{0}^{2}-4)^{2}$+8,
∴当x0=±2时,|CP|取得最小值2$\sqrt{2}$,2θ取得最大值$\frac{π}{2}$,即cos2θ取得最小值0.
又2θ>0,∴cos2θ<1.
∴$\overrightarrow{CA}$•$\overrightarrow{CB}$=4cos2θ∈[0,4).
故答案为:[0,4).
点评 本题考查了抛物线与圆的标准方程及其性质、直线与圆相切的性质、两点之间的距离公式、二次函数的单调性、三角函数的单调性、直角三角形的边角关系,考查了推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:选择题
| A. | 充要条件 | B. | 充分不必要条件 | ||
| C. | 必要不充分条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 年份 | 2013 | 2014 | 2015 | 2016 |
| 年份代号(x) | 1 | 2 | 3 | 4 |
| PM2.5指数(y) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3-\sqrt{3}}{4}$ | B. | $\frac{3-\sqrt{3}}{3}$ | C. | $\frac{2-\sqrt{3}}{4}$ | D. | $\frac{2-\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 钝角△ | B. | Rt△ | C. | 等边△ | D. | 等腰Rt△ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com