精英家教网 > 高中数学 > 题目详情
6.已知抛物线M:x2=4y,圆C:x2+(y-3)2=4,在抛物线M上任取一点P,向圆C作两条切线PA和PB,切点分别为A,B,则$\overrightarrow{CA}$•$\overrightarrow{CB}$的取值范围是[0,4).

分析 设∠ACB=2θ,可得$\overrightarrow{CA}$•$\overrightarrow{CB}$=4cos2θ.设P$({x}_{0},\frac{{x}_{0}^{2}}{4})$,可得|CP|2=${x}_{0}^{2}$+$(\frac{{x}_{0}^{2}}{4}-3)^{2}$=$\frac{1}{16}({x}_{0}^{2}-4)^{2}$+8,利用二次函数的性质可得其最小值,根据2θ的取值范围即可得出.

解答 解:设∠ACB=2θ,
则$\overrightarrow{CA}$•$\overrightarrow{CB}$=4cos2θ.
设P$({x}_{0},\frac{{x}_{0}^{2}}{4})$,
则|CP|2=${x}_{0}^{2}$+$(\frac{{x}_{0}^{2}}{4}-3)^{2}$=$\frac{{x}_{0}^{4}}{16}$-$\frac{{x}_{0}^{2}}{2}$+9=$\frac{1}{16}({x}_{0}^{2}-4)^{2}$+8,
∴当x0=±2时,|CP|取得最小值2$\sqrt{2}$,2θ取得最大值$\frac{π}{2}$,即cos2θ取得最小值0.
又2θ>0,∴cos2θ<1.
∴$\overrightarrow{CA}$•$\overrightarrow{CB}$=4cos2θ∈[0,4).
故答案为:[0,4).

点评 本题考查了抛物线与圆的标准方程及其性质、直线与圆相切的性质、两点之间的距离公式、二次函数的单调性、三角函数的单调性、直角三角形的边角关系,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.若p:φ=2kπ+$\frac{π}{2}$(k∈Z),q:f(x)=sin(x+φ)是偶函数,则p是q的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),定义椭圆C的“相关圆”E为:x2+y2=$\frac{{a}^{2}{b}^{2}}{{a}^{2}+{b}^{2}}$.若抛物线y2=4x的焦点与椭圆C的右焦点重合,且椭圆C的短轴长与焦距相等.
(1)求椭圆C及其“相关圆”E的方程;
(2)过“相关圆”E上任意一点P作其切线l,若l与椭圆C交于A,B两点,求证:∠AOB为定值(O为坐标原点);
(3)在(2)的条件下,求△OAB面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.重庆某教育研究机构对重庆38个区县中学生体重进行调查,按地域把它们分成甲、乙、丙、丁四个组,对应区县个数为4,10,16,8,若用分层抽样抽取9个城市,则丁组应抽取的区县个数为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.PM2.5是指空气中直径小于或等于2.5微米的细颗粒物,它对人体健康和大气环境质量的影响很大.2012年2月,中国发布了《环境空气质量标准》,开始大力治理空气污染.用x=1,2,3,4,5依次表示2013年到2017年这五年的年份代号,用y表示每年3月份的PM2.5指数的平均值(单位:μg/m3).已知某市2013年到2016年每年3月份PM2.5指数的平均值的折线图如图:

(1)根据折线图中的数据,完成表格:
年份2013201420152016
年份代号(x)1234
PM2.5指数(y)
(2)建立y关于x的线性回归方程;
(3)在当前治理空气污染的力度下,预测该市2017年3月份的PM2.5指数的平均值.
附:回归直线方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中参数的最小二乘估计公式;
$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=x3-3x,当x在区间任意取值时,函数值不小于0又不大于2的概率是(  )
A.$\frac{3-\sqrt{3}}{4}$B.$\frac{3-\sqrt{3}}{3}$C.$\frac{2-\sqrt{3}}{4}$D.$\frac{2-\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.△ABC中,角A,B,C成等差数列,且cos(A-$\frac{π}{6}$)+sinA=$\sqrt{3}$,则△ABC的形状是(  )
A.钝角△B.Rt△C.等边△D.等腰Rt△

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知点P(x,y)为曲线$\frac{x^2}{16}$+$\frac{y^2}{12}$=1(y≥0)上的任意一点,求x+2y-12的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.计算下列各不定积分:
(1)∫$\frac{1}{{x}^{2}\sqrt{x}}$dx;
(2)∫xe${\;}^{\frac{{x}^{2}}{2}}$dx.

查看答案和解析>>

同步练习册答案