科目:高中数学 来源: 题型:
已知点Pn(an,bn)满足:对任意的n∈N,an+1=anbn+1,bn+1=
,又知P0(
).
(1)求过点P0、P1的直线l的方程;
(2)证明点Pn(n≥2)在直线l上;
(3)求点Pn的极限位置.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,最小值为1.(1)求椭圆C的标准方程;
(2)若直线l:
与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点。求证: 直线l过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
圆拱桥的一孔圆拱如图所示,该圆拱是一段圆弧,其跨度AB=20米,拱高OP=4米,在建造时每隔4米需用一根支柱支撑。
(1)建立适当的坐标系,写出圆弧的方程;
(2)求支柱A2B2的高度(精确到0.01米)。
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
定义:如果函数
在定义域内给定区间
上存在
,满足
,则称函数
是
上的“平均值函数”,
是它的一个均值点,如
是
上的平均值函数,0就是它的均值点.现有函数
是
上的平均值函数,则实数
的取值范围是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
已知A是抛物线y2=4x上一点,F是抛物线的焦点,直线FA交抛物线的准线于点B(点B在x轴上方),若|AB|=2|AF|,则点A的坐标为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com