精英家教网 > 高中数学 > 题目详情
17.已知cosα=$\frac{1}{3}$,则sin($\frac{π}{2}$+α)=(  )
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.-$\frac{2\sqrt{2}}{3}$D.$\frac{2\sqrt{2}}{3}$

分析 由条件利用诱导公式进行化简求值,可得结果.

解答 解:∵cosα=$\frac{1}{3}$,则sin($\frac{π}{2}$+α)=cosα=$\frac{1}{3}$,
故选:A.

点评 本题主要考查利用诱导公式进行化简求值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右顶点A(2,0),且过点$(-1,\frac{{\sqrt{3}}}{2})$
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点B(1,0)且斜率为k1(k1≠0)的直线l于椭圆C相交于E,F两点,直线AE,AF分别交直线x=3于M,N两点,线段MN的中点为P,记直线PB的斜率为k2,求证:k1•k2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知△ABC中,角A,B,C所对的边分别为a,b,c,设$\overrightarrow{m}$=(a,$\frac{\sqrt{3}}{2}$),$\overrightarrow{n}$=(cosC,c),且$\overrightarrow{m}$•$\overrightarrow{n}$=b.
(Ⅰ)若sin(A+θ)=$\frac{1}{3}$,求cos($\frac{π}{3}$-θ)的值;
(Ⅱ)若b=4,a=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.y=$\sqrt{3}$cos(x+$\frac{π}{6}$)的最大值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知A(-3,0),B、C两点分别在y轴和x轴上运动,点P为BC延长线上一点,并且满足$\overrightarrow{AB}⊥\overrightarrow{BP},\overrightarrow{BC}=\frac{1}{2}\overrightarrow{BP}$,试求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{a}$+$\overrightarrow{b}$|=2,|$\overrightarrow{a}$-$\overrightarrow{b}$|=2$\sqrt{5}$,则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{4}$B.$\frac{2π}{3}$C.$\frac{3π}{4}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=3x-2x-3的零点的个数是(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.某几何体的三视图如图所示,则该几何体的体积等于56.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,AB为圆O的直径,点C在圆周上(异于点A,B),直线PA垂直于圆O所在的平面,点M,N分别为线段PB,BC的中点,有以下三个命题:
①OC∩平面PAC;②MO∥平面PAC;③平面PAC∥平面MON,
其中正确的命题是(  )
A.①②B.①③C.②③D.①②③

查看答案和解析>>

同步练习册答案