精英家教网 > 高中数学 > 题目详情
5.y=$\sqrt{3}$cos(x+$\frac{π}{6}$)的最大值为$\sqrt{3}$.

分析 由条件利用余弦函数的最大值,求得函数y的最大值.

解答 解:∵cos(x+$\frac{π}{6}$)的最大值为1,∴y=$\sqrt{3}$cos(x+$\frac{π}{6}$)的最大值为$\sqrt{3}$,
故答案为:$\sqrt{3}$.

点评 本题主要考查余弦函数的最大值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.在△ABC中,若a=($\sqrt{3}$-1)b,C=30°,则A=$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$过点$P(2,\sqrt{3})$,且它的离心率为$\frac{1}{2}$.
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)与圆(x-1)2+y2=1相切的直线l:y=kx+t(k∈R,t∈R)交椭圆E于M、N两点,若椭圆E上一点C满足$\overrightarrow{OM}+\overrightarrow{ON}=λ\overrightarrow{OC}$(O为坐标原点),求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知圆O的直径AB=4,定直线l到圆心的距离为6,且直线l⊥直线AB.点P是圆上异于A、B的任意一点,直线PA、PB分别交l于M、N点.如图,以AB为x轴,圆心O为原点建立平面直角坐标系xOy.
(1)若∠PAB=30°,求以MN为直径的圆的方程;
(2)当点P变化时,求证:以MN为直径的圆必过圆O内的一定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=log2(2x)•log2(4x),且$\frac{1}{4}$≤x≤4.
(1)求f($\sqrt{2}$)的值;
(2)若令t=log2x,求实数t的取值范围;
(3)将y=f(x)表示成以t(t=log2x)为自变量的函数,并由此求函数y=f(x)的最小值与最大值及与之对应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列语句是真命题的是(  )
A.x>1B.若a>b,则a2>ab
C.y=sinx是奇函数吗?D.若a-2是无理数,则a是无理数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知cosα=$\frac{1}{3}$,则sin($\frac{π}{2}$+α)=(  )
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.-$\frac{2\sqrt{2}}{3}$D.$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$f(x)=\sqrt{3}sinxcosx-{cos^2}x+\frac{1}{2}\;(x∈R)$.
(1)求函数f(x)的单调递增区间;
(2)函数f(x)的图象上所有点的横坐标扩大到原来的2倍,再向右平移$\frac{π}{6}$个单位长度,得g(x)的图象,求函数y=g(x)在x∈[0,π]上的最大值及最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设P是双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{9}$=1上一点,该双曲线的一条渐近线方程是3x+4y=0,F1,F2分别是双曲线的左、右焦点,若|PF1|=10,则|PF2|等于18或2.

查看答案和解析>>

同步练习册答案