精英家教网 > 高中数学 > 题目详情
证明函数f(x)=
1
x-2
在(2,+∞)上是减函数.
考点:函数单调性的判断与证明
专题:导数的综合应用
分析:通过求导数即可证出函数f(x)在(2,+∞)上是减函数.
解答: 证:f′(x)=-
1
(x-2)2
<0;
∴函数f(x)在(2,+∞)上单调递减,是减函数.
点评:本题利用导数符号和函数单调性的关系证明,比用单调性的定义证明更简练.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线a、b、c与平面α.给出:
①a⊥c,b⊥c⇒a∥b;
②a∥c,b∥c⇒a∥b;
③a∥α,b∥α⇒a∥b;
④a⊥α,b⊥α⇒a∥b.
其中正确命题的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P(x,y)为函数y=1+lnx图象上一点,O为坐标原点,记直线OP的斜率k=f(x).
(Ⅰ)若函数f(x)在区间(a,a+
1
3
)(a>0)上存在极值,求实数a的取值范围;
(Ⅱ)如果对任意的x1,x2∈[e2,+∞),有|f(x1)-f(x2)|≥m|
1
x1
-
1
x2
|,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二元一次不等式组
x+y≤4
y≥x
x≥1
对应的平面区域为M
(1)若点P(x,y)是区域M内的任意一点,求目标函数Z=
y-1
x
的最大值;
(2)若点P(x,y)是区域M内的任意一点,求点P满足条件(x-1)2+(y-1)2≤1的概率;
(3)若点Q(x,y)是不等式组
1≤x≤2
0≤y≤2
表示的区域内的任意一点,求点Q落在区域M内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

当x>0时,求证:ex>lnx+2.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点求证:平面EFG∥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列各式的值.
(1)0.25-2+(
8
27
 -
1
3
-
1
2
lg16-2lg5+(
1
2
0     
(2)
1
sin10°
-
3
cos10°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin2x+
3
sinxcosx.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)当x[-
π
12
π
12
]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
OP
=(2cosx+1,cos2x-sinx+1),
OQ
=(cosx,-1),定义f(x)=
OP
OQ

(1)求出f(x)的解析式.当x≥0时,它可以表示一个振动量,请指出其振幅,相位及初相.
(2)f(x)的图象可由y=sinx的图象怎样变化得到?
(3)设x∈[-
4
π
4
]时f(x)的反函数为f-1(x),求f-1
2
2
)的值.

查看答案和解析>>

同步练习册答案