精英家教网 > 高中数学 > 题目详情
6.如图所示,四棱锥P-ABCD中,PA=PB=PC=PD,AB=a,O为底面正方形的中心,侧棱PA与底面ABCD所成的角的正切值为$\frac{{\sqrt{6}}}{2}$.
(1)求侧面PAD与底面ABCD所成的二面角的大小;
(2)若E是PB的中点,求异面直线PD与AE所成角的正切值.

分析 (1)取AD中点M,连接MO,PM,则∠PMO为所求二面角P-AD-O的平面角,解得答案;
(2)连接AE,OE,则∠OEA为异面直线PD与AE所成的角,解得答案.

解答 解:(1)取AD中点M,连接MO,PM,
依条件可知AD⊥MO,AD⊥PO,
则∠PMO为所求二面角P-AD-O的平面角.
∵PO⊥面ABCD,
∴∠PAO为侧棱PA与底面ABCD所成的角.
∴tan∠PAO=$\frac{{\sqrt{6}}}{2}$.
AB=a,AO=$\frac{{\sqrt{2}}}{2}$a,
∴PO=AO•tan∠POA=$\frac{{\sqrt{3}}}{2}$a,
tan∠PMO=$\frac{PO}{MO}$=$\sqrt{3}$.
∴∠PMO=60°.…(6分)
(2)连接AE,OE,∵OE∥PD,
∴∠OEA为异面直线PD与AE所成的角.
∵AO⊥BD,AO⊥PO,∴AO⊥平面PBD.又OE?平面PBD,
∴AO⊥OE.
∵OE=$\frac{1}{2}$PD=$\frac{1}{2}$$\sqrt{{PO}^{2}+{DO}^{2}}$=$\frac{5}{4}$a,
∴tan∠AEO=$\frac{AO}{EO}$=$\frac{{2\sqrt{10}}}{5}$.…(12分)

点评 本题考查的知识点是二面角的平面角,异面直线的夹角,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow{a}$=($\sqrt{3}$cosωx,1),$\overrightarrow{b}$=(sinωx,cos2ωx-$\frac{1}{2}$)(ω>0),函数f(x)=$\overrightarrow{a}•\overrightarrow{b}$,若函数f(x)的图象的一条对称轴与它相邻的一个对称中心的距离为$\frac{π}{4}$.
(1)求f(x)的表达式;
(2)将函数f(x)的图象向右平移$\frac{π}{4}$个单位,再将各点的横坐标缩短到原来的$\frac{1}{2}$(纵坐标不变),得到函数y=g(x)的图象,求函数g(x)在区间$[0,\frac{π}{4}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知一个口袋中装有n个红球(n≥1且n∈N)和2个白球,从中有放回地连续摸三次,每次摸出两个球,若两个球颜色不同则为中奖,否则不中奖.
(1)当n=3时,设三次摸球中(每次摸球后放回)中奖的次数为ξ,求的ξ分布列;
(2)记三次摸球中(每次摸球后放回)恰有两次中奖的概率为P,当n取多少时,P最大.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.同时掷两个骰子,则向上的点数和为8的概率是(  )
A.$\frac{1}{6}$B.$\frac{7}{36}$C.$\frac{5}{36}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知箱内有质量和大小相同的20个红球,80个黑球,规定从中任意取出1个,记录它的颜色后再放回箱内,搅拌均匀后再任意取出1个,记录它的颜色后又放回箱内搅拌均匀,从此连续抽取三次.试求:
(1)事件A:“第一次取出黑球,第二次取出红球,第三次取出黑球”的概率;
(2)如果有50人分别依次进行这样(每人按规则均取球三次)的抽取,试推测约有多少人取出2个黑球,1个红球?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若曲线f(x)=x(x-m)2在x=1处取得极小值,则m的值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数$f(x)=\left\{\begin{array}{l}{x^2}+2x-3,x≤0\\ lnx-a,x>0\end{array}\right.(a∈R)$,若关于x的方程f(x)=k有三个不等的实根,则实数k的取值范围是(-4,-3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ex-kx,x∈R.
(1)若k=e,试确定函数f(x)的单调区间和极值;
(2)若f(x)在区间[0,2]上单调递增,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x2-kx(k∈R),g(x)=lnx.
(1)若函数y=f(x)与y=g(x)的图象有公共点,求实数k的取值范围;
(2)设函数h(x)=f(x)-g(x),?a,b>0(a≠b),若?c>0,使得h′(c)=$\frac{h(a)-h(b)}{a-b}$,求证:$\sqrt{ab}$<c<$\frac{a+b}{2}$.

查看答案和解析>>

同步练习册答案