精英家教网 > 高中数学 > 题目详情
14.同时掷两个骰子,则向上的点数和为8的概率是(  )
A.$\frac{1}{6}$B.$\frac{7}{36}$C.$\frac{5}{36}$D.$\frac{1}{4}$

分析 计算出掷两颗骰子的所有基本事件总数和点数和为8的基本事件个数,代入古典概型概率计算公式,可得答案.

解答 解:同时掷两颗骰子,得到点数如下表所示:

(1,6) (2,6)(3,6)(4,6)(5,6)(6,6)
 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5)
 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4)
 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3)
 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2)
 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1)
共有36种情况,
和为8的情况数有5种,
所以概率为$\frac{5}{36}$,
故选:C.

点评 本题考查的知识点是古典概型概率计算公式,其中熟练掌握利用古典概型概率计算公式求概率的步骤,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.若a2-ab+b2=1,a,b是实数,则a+b的最大值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.有四个游戏盘,如图所示,(其中A的外形为正方形;B的外形为正六边形;C的外形为正方形;D.的外形为圆,D.的阴影部分为等腰直角三角形)撒一粒黄豆到游戏盘,如果落在阴影部分,则可中奖.你希望中奖机会大,你应当选择的游戏盘为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知sin(π+α)=-$\frac{1}{2}$,求tan($\frac{π}{2}$-α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.过三点A(1,3),B(4,2),C(1,-7)的圆M交于y轴于P、Q两点.
(1)求线段PQ的长;
(2)动圆N的半径为1,N在直线4x-3y+20=0上运动,判断圆M和圆N能否有公共点,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知甲、乙、丙等6人.
(1)这6人同时参加一项活动,必须有人去,去几人自行决定,共有多少种不同的去法?
(2)这6人同时参加6项不同的活动,每项活动限1人参加,求甲不参加第一项活动且乙不参加第三项活动的概率.
(3)这6人同时参加4项不同的活动,求每项活动至少有1人参加的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图所示,四棱锥P-ABCD中,PA=PB=PC=PD,AB=a,O为底面正方形的中心,侧棱PA与底面ABCD所成的角的正切值为$\frac{{\sqrt{6}}}{2}$.
(1)求侧面PAD与底面ABCD所成的二面角的大小;
(2)若E是PB的中点,求异面直线PD与AE所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知四边形ABCD为菱形,且∠A=60°,E,F分别为AB,AD的中点,现将四边形EBCD沿DE折起至EBHD.

(Ⅰ)求证:EF∥平面ABH;
(Ⅱ)若平面EBHD⊥平面ADE,求二面角B-AH-D的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x2+a(x+lnx)+2.
(1)若函数f(x)在闭区间[1,2]上单调递减,试确定实数a的取值范围;
(2)若对任意x1,x2∈(0,+∞),x1<x2,且f(x1)+x1<f(x2)+x2恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案