精英家教网 > 高中数学 > 题目详情
2.已知sin(π+α)=-$\frac{1}{2}$,求tan($\frac{π}{2}$-α)的值.

分析 利用诱导公式和同角三角函数关系进行解答.

解答 解:∵sin(π+α)=-$\frac{1}{2}$,
∴sin(π+α)=sinα=-$\frac{1}{2}$,
∴cosα=±$\sqrt{1-(-\frac{1}{2})^{2}}$=±$\frac{\sqrt{3}}{2}$
∴tan($\frac{π}{2}$-α)=cotα=$\frac{cosα}{sinα}$=±$\sqrt{3}$.

点评 本题考查两角和与差的三角函数,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知二阶矩阵M有特征值λ=8及其对应的一个特征向量$\overrightarrow{{e}_{1}}$=$[\begin{array}{l}{1}\\{1}\end{array}]$,并且矩阵M对应的变换将点A(-1,2)变换成A′(-2,4).
(1)求矩阵M;
(2)设直线l在M-1对应的变换作用下得到了直线m:x-y=6,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.过曲线C:y=ex上一点P0(0,1)作曲线C的切线l0交x轴于点Q1(x1,0),又过Q1作x轴的垂线交曲线C于点P1(x1,y1),然后再过P1(x1,y1)作曲线C的切线l1交x轴于点Q2(x2,0),又过Q2作x轴的垂线交曲线C于点P2(x2,y2),…,以此类推,过点Pn的切线ln与x轴相交于点
Qn+1(xn+1,0),再过点Qn+1作x轴的垂线交曲线C于点Pn+1(xn+1,yn+1)(n∈N*).
(1)求x1、x2及数列{xn}的通项公式;
(2)设曲线C与切线ln及直线Pn+1Qn+1所围成的图形面积为Sn,求Sn的表达式;
(3)在满足(2)的条件下,若数列{Sn}的前n项和为Tn,求证:$\frac{{T}_{n+1}}{{T}_{n}}$<$\frac{{x}_{n+1}}{{x}_{n}}$(n∈N+).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.用数学归纳法证明“当n为正奇数时,xn+yn能被x+y整除”的第二步是(  )
A.证明假设n=k(k≥1且k∈N)时正确,可推出n=k+1正确
B.证明假设n=2k+1(k≥1且k∈N)时正确,可推出n=2k+3正确
C.证明假设n=2k-1(k≥1且k∈N)时正确,可推出n=2k+1正确
D.证明假设n≤k(k≥1且k∈N)时正确,可推出n=k+2时正确

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知一个口袋中装有n个红球(n≥1且n∈N)和2个白球,从中有放回地连续摸三次,每次摸出两个球,若两个球颜色不同则为中奖,否则不中奖.
(1)当n=3时,设三次摸球中(每次摸球后放回)中奖的次数为ξ,求的ξ分布列;
(2)记三次摸球中(每次摸球后放回)恰有两次中奖的概率为P,当n取多少时,P最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在直角坐标系xOy中,求曲线C1:5x2+8xy+4y2=1在矩阵M=$[\begin{array}{l}{1}&{2}\\{3}&{2}\end{array}]$对应的变换作用下得到的新曲线C2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.同时掷两个骰子,则向上的点数和为8的概率是(  )
A.$\frac{1}{6}$B.$\frac{7}{36}$C.$\frac{5}{36}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若曲线f(x)=x(x-m)2在x=1处取得极小值,则m的值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设P是圆(x-3)2+(y-1)2=4上的动点,Q是直线x=-3上动点,则|PQ|最小值为(  )
A.3B.5C.4D.11

查看答案和解析>>

同步练习册答案