精英家教网 > 高中数学 > 题目详情
16.函数y=2cos2($\frac{π}{4}$-$\frac{x}{2}}$),x∈[0,2π]的递减区间为(  )
A.[0,π]B.[$\frac{π}{2}$,π]C.[${\frac{π}{3}$,$\frac{5π}{3}}$]D.[$\frac{π}{2}$,$\frac{3π}{2}}$]

分析 利用二倍角的余弦公式化简函数的解析式,再根据正弦函数的单调性求得该函数的递减区间.

解答 解:函数y=2cos2($\frac{π}{4}$-$\frac{x}{2}}$)=cos($\frac{π}{2}$-x)+1=sinx+1,
根据正弦函数的减区间可得该函数的递减区间为[2kπ+$\frac{π}{2}$,2kπ+$\frac{3π}{2}$](k∈Z)和x∈[0,2π]得到函数y=2cos2($\frac{π}{4}$-$\frac{x}{2}}$),x∈[0,2π]的递减区间为:[$\frac{π}{2}$,$\frac{3π}{2}$]
故选:D.

点评 本题主要考查二倍角的余弦公式的应用,正弦函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.点A(-4,0)到抛物线C:y2=8x的焦点F的距离|AF|等于6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,一个大风车的半径是8米,每12分钟旋转一周,最低点离地面2米,若风车翼片从最低点按逆时针方向开始旋转,则该翼片的端点P离地面的距离h(米)与时间t(分钟)之间的函数关系是(  )
A.h=-8sin($\frac{π}{6}$t)+10B.h=-8cos($\frac{π}{3}$t)+10C.h=8cos($\frac{π}{6}$t)+10D.h=-8cos($\frac{π}{6}$t)+10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知不等式组$\left\{\begin{array}{l}x+y≤1\\ x-y≥-1\\ y≥0\end{array}\right.$所表示的平面区域为D,若直线y=kx-3与平面区域D有公共点,则k的取值范围为(-∞,-3]∪[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设f(x)是定义域在R上的偶函数,对x∈R,都有f(x-2)=f(x+2),且当x∈[-2,0]时,f(x)=($\frac{1}{2}$)x-1,若在区间(-2,6]内关于x的方程f(x)-loga(x+2)=0(a>1)至少有两个不同的实数根,至多有3个不同的实数根,则实数a的取值范围是$[{\root{3}{4},2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.用反证法证明命题“设a,b为实数,则函数f(x)=x3+ax+b至少有一个极值点”时,要作的假设是(  )
A.函数f(x)=x3+ax+b恰好有两个极值点B.函数f(x)=x3+ax+b至多有两个极值点
C.函数f(x)=x3+ax+b没有极值点D.函数f(x)=x3+ax+b至多有一个极值点

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若复数(a+i)(2+i)是纯虚数,则实数a等于(  )
A.2B.$\frac{1}{2}$C.-$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)求经过两条直线2x-y-3=0和4x-3y-5=0的交点,并且与直线2x+3y+5=0垂直的直线方程.
(2)已知在△ABC中,sin A+cos A=$\frac{1}{5}$.求tan A的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设点P是曲线y=2x2上的一个动点,曲线y=2x2在点P处的切线为l,过点P且与直线l垂直的直线与曲线y=2x2的另一交点为Q,则PQ的最小值为$\frac{3\sqrt{3}}{4}$.

查看答案和解析>>

同步练习册答案