精英家教网 > 高中数学 > 题目详情
1.用反证法证明命题“设a,b为实数,则函数f(x)=x3+ax+b至少有一个极值点”时,要作的假设是(  )
A.函数f(x)=x3+ax+b恰好有两个极值点B.函数f(x)=x3+ax+b至多有两个极值点
C.函数f(x)=x3+ax+b没有极值点D.函数f(x)=x3+ax+b至多有一个极值点

分析 直接利用命题的否定写出假设即可.

解答 解:反证法证明问题时,反设实际是命题的否定,
∴用反证法证明命题“设a,b为实数,则函数f(x)=x3+ax+b至少有一个极值点”时,要做的假设是:函数f(x)=x3+ax+b没有极值点.
故选:C

点评 本题考查反证法证明问题的步骤,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.不等式|x-x2-2|>x2-3x-4的解集是(-3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.对于定义域为D的函数f(x)=k+$\sqrt{x+2}$,满足存在区间[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b],求实数k的取值范围$(-\frac{9}{4},-2]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax-lnx.
(1)求f(x)的单调区间;
(2)若方程f(x)=0恰有两解,求实数a取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数y=2cos2($\frac{π}{4}$-$\frac{x}{2}}$),x∈[0,2π]的递减区间为(  )
A.[0,π]B.[$\frac{π}{2}$,π]C.[${\frac{π}{3}$,$\frac{5π}{3}}$]D.[$\frac{π}{2}$,$\frac{3π}{2}}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.阅读如图所示的程序框图,若输入P=2013,则输出的S是$\frac{2013}{2014}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=x3+bx2+cx+d在区间[-1,2]上是减函数,则(  )
A.2b+c有最大值9B.2b+c有最小值9C.2b+c有最大值-9D.2b+c有最小值-9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知x=2+i,设M=1-${C}_{4}^{1}$x+${C}_{4}^{2}$x2-${C}_{4}^{3}$x3+${C}_{4}^{4}$x4,则M的值为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法,如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为4,3,则输出v的值为(  )
A.20B.61C.183D.548

查看答案和解析>>

同步练习册答案