精英家教网 > 高中数学 > 题目详情
7.如图,一个大风车的半径是8米,每12分钟旋转一周,最低点离地面2米,若风车翼片从最低点按逆时针方向开始旋转,则该翼片的端点P离地面的距离h(米)与时间t(分钟)之间的函数关系是(  )
A.h=-8sin($\frac{π}{6}$t)+10B.h=-8cos($\frac{π}{3}$t)+10C.h=8cos($\frac{π}{6}$t)+10D.h=-8cos($\frac{π}{6}$t)+10

分析 由实际问题设出P与地面高度与时间t的关系,f(t)=Acos(ωt+φ)+B(A>0,ω>0,φ∈[0,2π)),由题意求出三角函数中的参数A,B,及周期T,利用三角函数的周期公式求出ω,通过初始位置求出φ,从而得解.

解答 解:由题意,T=12,∴ω=$\frac{π}{6}$,
设h(t)=Acos(ωt+φ)+B,(A>0,ω>0,φ∈[0,2π)),则$\left\{\begin{array}{l}{A+B=18}\\{-A+B=2}\end{array}\right.$,
∴A=8,B=10,可得:h(t)=8cos($\frac{π}{6}$t+φ)+10,
∵P的初始位置在最低点,t=0时,有:h(t)=2,即:8cosφ+10=2,解得:φ=2kπ+π,k∈Z,
∴φ=π,
∴h与t的函数关系为:h(t)=8cos($\frac{π}{6}$t+π)+10=-8cos$\frac{π}{6}$t+10,(t≥0),
故选D.

点评 本题考查通过实际问题得到三角函数的性质,由性质求三角函数的解析式;考查y=Asin(ωx+φ)中参数的物理意义,注意三角函数的模型的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.一个物体的运动方程是s=1-t+t2,其中s的单位是米,t的单位是秒,那么物体在2秒末的瞬时速度是(  )
A.3米/秒B.4米/秒C.5米/秒D.2米/秒

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设函数$f(x)=cos(2x+\frac{π}{3})+{sin^2}x$,a,b,c分别是△ABC的三个内角A,B,C所对的边,已知$cosB=\frac{1}{3},f(\frac{C}{2})=-\frac{1}{4}$,其中角C为锐角,则sinA=(  )
A.$\frac{{2\sqrt{2}+\sqrt{3}}}{6}$B.$\frac{{2\sqrt{2}-\sqrt{3}}}{6}$C.$\frac{{\sqrt{2}+2\sqrt{3}}}{6}$D.$\frac{{\sqrt{2}-2\sqrt{3}}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知指数函数y=2x的图象与y轴交于点A,对数函数y=lnx的图象与x轴交于点B,点P在直线AB上移动,点M(0,-3),则|MP|的最小值为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=2cos2x-8sinx-3的值域为[-11,5].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.对于定义域为D的函数f(x)=k+$\sqrt{x+2}$,满足存在区间[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b],求实数k的取值范围$(-\frac{9}{4},-2]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)在一个周期内的图象如图.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调增区间;
(3)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数y=2cos2($\frac{π}{4}$-$\frac{x}{2}}$),x∈[0,2π]的递减区间为(  )
A.[0,π]B.[$\frac{π}{2}$,π]C.[${\frac{π}{3}$,$\frac{5π}{3}}$]D.[$\frac{π}{2}$,$\frac{3π}{2}}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=x2lnx在点(x0,f(x0))处的切线平行于x轴,则f(x0)等于(  )
A.-2eB.2eC.-$\frac{1}{2e}$D.$\frac{1}{2e}$

查看答案和解析>>

同步练习册答案