精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=$\frac{1}{3}{x^3}$-4x+4,则函数的极小值为-$\frac{4}{3}$.

分析 求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极小值.

解答 解:f′(x)=x2-4,
令f′(x)>0,解得:x>2或x<-2,
令f′(x)<0,解得:-2<x<2,
∴f(x)在(-∞,-2)递增,在(-2,2)递减,在(2,+∞)递增,
∴f(x)的极小值是f(2)=$-\frac{4}{3}$,
故答案为:-$\frac{4}{3}$.

点评 本题考查了函数的单调性、极值问题,考查导数的应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.若实数x,y满足$\left\{\begin{array}{l}x+2y-4≤0\\ x-y-1≤0\\ x≥1\end{array}$,则$\frac{y+2}{x+3}$的取值范围是[$\frac{1}{2}$,$\frac{7}{8}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=x(1+$\sqrt{1-{x}^{2}}$)的最大值是(  )
A.3$\sqrt{3}$B.$\sqrt{3}$C.$\frac{3\sqrt{3}}{2}$D.$\frac{3\sqrt{3}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$ax2+2bx+c,函数f(x)在区间(0,1)内取极大值,在区间(1,2)内取极小值,则u=$\frac{b-2}{a-1}$的取值范围是$(\frac{1}{4},1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.点(1,-1)到直线3x-4y-2=0的距离为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.2log62+$\frac{1}{lo{g}_{9}6}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知矩阵M=$[\begin{array}{l}{2}&{m}\\{n}&{1}\end{array}]$的两个特征向量a1=$[\begin{array}{l}{1}\\{0}\end{array}]$,a2=$[\begin{array}{l}{0}\\{1}\end{array}]$,若β=$[\begin{array}{l}{1}\\{2}\end{array}]$,求M2β.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=$\frac{{\root{3}{x^2}}}{e^x}$在x∈[-2,2]上的极值点的位置有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某公司在一次对员工的休闲方式(看电视与运动)与性别之间是否有关系的调查中,共调查了124人,其中女性70人中主要休闲方式是看电视的有43人,男性中主要休闲方式是运动的有33人.
(1)根据以上数据建立一个2×2的列联表;
(2)检验性别与休闲方式是否有关系.
${Χ^2}=\frac{{n{{({n_{11}}{n_{22}}-{n_{12}}{n_{21}})}^2}}}{{{n_{1+}}{n_{2+}}{n_{+1}}{n_{+2}}}}$
P(Χ2≥k)0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828

查看答案和解析>>

同步练习册答案