精英家教网 > 高中数学 > 题目详情
12.在△ABC中,若a=2,b=2$\sqrt{3},B=\frac{π}{3}$,则△ABC的面积为$2\sqrt{3}$.

分析 利用已知条件判断三角形的形状,直接求解三角形的面积.

解答 解:在△ABC中,若a=2,b=2$\sqrt{3},B=\frac{π}{3}$,
可得sinA=$\frac{asinB}{b}$=$\frac{1}{2}$,a<b,可得A=$\frac{π}{6}$,
三角形是直角三角形,
则△ABC的面积为:$\frac{1}{2}×2×2\sqrt{3}$=$2\sqrt{3}$.
故答案为:$2\sqrt{3}$.

点评 本题考查正弦定理的应用,三角形的解法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.复数z=1-i,则$\frac{1}{z}+{z^2}$对应的点所在象限为(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.异面直线l与m成60°,异面直线l与n成45°,则异面直线m与n成角范围是(  )
A.[15°,90°]B.[60°,90°]C.[15°,105°]D.[30°,105°]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知圆C的极坐标方程是ρ=4sinθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t+m}\end{array}\right.$(t是参数).若直线l与圆C相切,求正数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知集合A={1,2,3,4},集合B={x|x≤a,a∈R},若A∪B=(-∞,5],则a的值是5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知a>0,设不等式组$\left\{\begin{array}{l}x≥1\\ x+y≤3\\ y≥a(x-3)\end{array}\right.$在平面直角坐标系中所表示的区域的面积为4,则a的值等于(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知映射f:P(m,n)→P′($\sqrt{m}$,$\sqrt{n}$)(m≥0,n≥0).设点A(2,6),B(4,4),点M是线段AB上一动点,f:M→M′.当点M是线段AB的中点时,点M′的坐标是($\sqrt{3}$,$\sqrt{5}$);当点M在线段AB上从点A开始运动到点B结束时,点M的对应点M′所经过的路线长度为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设抛物线C:y2=2px(p>0)的焦点为F,过F且斜率为k的直线l交抛物线C于A(x1,y1)、B(x2,y2)两点,且y1y2=-4.
(Ⅰ)求抛物线C的标准方程;
(Ⅱ)若k=1,O为坐标原点,求△OAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设函数f(x)=sin(ωx+φ)(ω,φ是常数,ω>0),若f(x)在区间[$\frac{1}{3}$,1]上具有单调性,且f(0)=f($\frac{2}{3}$)=-f(1),则下列有关f(x)的命题正确的有①③④⑤(把所有正确的命题序号都写上)
①f(x)的最小正周期为2;
②f(x)在[1,$\frac{5}{3}$]上具有单调性;
③当x=$\frac{1}{3}$时,函数f(x)取得最值;
④y=f(x+$\frac{5}{6}$)为奇函数;
⑤(-$\frac{φ}{ω}$,-φ)是y=f(x)+ωx图象的一个对称中心.

查看答案和解析>>

同步练习册答案