精英家教网 > 高中数学 > 题目详情
3.异面直线l与m成60°,异面直线l与n成45°,则异面直线m与n成角范围是(  )
A.[15°,90°]B.[60°,90°]C.[15°,105°]D.[30°,105°]

分析 由题意画出图形,通过直线的平移,可得过直线l上的任意一点作m,n的平行线,若m,n的平行线与l共面,可得异面直线m与n成角最小为15°;否则,可得到m,n能够构成两条异面直线所成的最大角90°.

解答 解:如图,

在直线l任取一点O,
过O作m′∥m,作n′∥n,当m′、n′、l三线共面时,m′与n′所成角最小为15°,即异面直线m与n成角最小为15°;
当n′不在l与m′所确定的平面α内时,过O作平面β,使m′⊥β,则l为平面β的一条斜线,在β内存在与l成45°角的直线n′,
∴m′与n′所成角最大为90°,即异面直线m与n成角最小为15°.
故选:A.

点评 本题考查异面直线所成的角,考查学生的空间想象能力和思维能力,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=lnx-$\frac{a(x+1)}{x}$,试讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.为了解某市甲、乙、丙三所学校高三数学模拟考试成绩,采取分层抽样方法,从甲校1400份试卷、乙校640份试卷、丙校800份试卷中进行抽样调研.若从丙校800份试卷中抽取了40份试卷,则这次高三共抽查的试卷份数为142.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知随机变量ξ服从正态分布N(2,1),若P(ξ>3)=0.023,则P(1≤ξ≤3)=(  )
A.0.046B.0.623C.0.977D.0.954

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设f(x)=|ax-1|+|x+2|,(a>0).
(I)若a=1,时,解不等式 f(x)≤5;
(Ⅱ)若f(x)≥2,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.定义$\frac{n}{{p}_{1}+{p}_{2}+p+…+{p}_{n}}$为n个正数p1,p2,…,pn的“调和倒数”.若数列{an}的前n项的“调和倒数”为$\frac{1}{2n+1}$,又bn=$\frac{{a}_{n}+1}{2}$,则$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+…+$\frac{1}{{b}_{9}{b}_{10}}$=$\frac{9}{40}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知集合A={-1,0,3},集合B={x|y=$\sqrt{2-x}$},则A∩B={0,-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,若a=2,b=2$\sqrt{3},B=\frac{π}{3}$,则△ABC的面积为$2\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知数列{an}满足a1=a2=1,an+2=an+1+an(n∈N).若存在正实数λ使得数列|an+1+λan|为等比数列,则λ=$\frac{-1+\sqrt{5}}{2}$.

查看答案和解析>>

同步练习册答案