精英家教网 > 高中数学 > 题目详情
13.某县为了了解本地区的用电度数,从全县10万户居民中,其中3万户城镇居民,7万户农村居民,用分层抽样方法抽取若干户居民进行入户调查,其中城镇居民抽取了120户,则农村居民应抽取的户数为(  )
A.140B.280C.400D.420

分析 利用分层抽样的性质求解.

解答 解:由分层抽样性质,得:
农村居民应抽取的户数为:70000×$\frac{120}{30000}$=280(户).
故选:B.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意分层抽样的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.设集合P={x|$\int_0^x{({3{t^2}-10t+6})}dt$=0},则集合P的所有子集个数是(  )
A.2B.3C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=loga(a2x+t)其中a>0且a≠1.
(1)当a=2时,若f(x)<x无解,求t的范围;
(2)若存在实数m,n(m<n),使得x∈[m,n]时,函数f(x)的值域都也为[m,n],求t的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.使函数y=3-2cosx取得最小值时的x的集合为(  )
A.{x|x=2kπ+π,k∈Z}B.{x|x=2kπ,k∈Z}C.$\{\left.x\right|x=2kπ+\frac{π}{2},k∈Z\}$D.$\{\left.x\right|x=2kπ-\frac{π}{2},k∈Z\}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数$f(x)=m-\frac{2}{{{2^x}+1}}$,m∈R
(1)若f(x)为奇函数,求常数m的值;
(2)用函数单调性定义证明:f(x)在R上为增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知方程$\frac{1}{2}$x2=|2x+a|有四个不同的解,则实数a的取值范围是-2<a<2且a≠0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.定义在R上的函数f(x)满足f(1-x)=f(x+1),f(x+1)=-f(x),且在[0,1]上单调递减,则(  )
A.f($\frac{7}{2}$)<f($\frac{7}{3}$)<f($\frac{7}{5}$)B.f($\frac{7}{5}$)<f($\frac{7}{2}$)<f($\frac{7}{3}$)C.f($\frac{7}{3}$)<f($\frac{7}{2}$)<f($\frac{7}{5}$)D.f($\frac{7}{5}$)<f($\frac{7}{3}$)<f($\frac{7}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标xOy平面上,已知A(x1,y1),B(x2,y2)是以原点O为圆心的单位圆上的两点,∠AOB=θ(θ为钝角).
(1)若点A(1,0),点B(-$\frac{3}{5}$,$\frac{4}{5}$),求tan($\frac{θ}{2}$+$\frac{π}{4}$)的值;
(2)若sin(θ+$\frac{π}{4}$)=$\frac{3}{5}$,求x1x2+y1y2的值;
(3)若点A(1,0),若$\overrightarrow{OA}$+$\overrightarrow{OB}$=$\overrightarrow{OC}$,四边形OACB的面积Sθ表示,求用Sθ+$\overrightarrow{OA}$•$\overrightarrow{OC}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列各式中正确的是(  )
A.loga(x-y)=logax-logayB.$\frac{lo{g}_{a}x}{lo{g}_{a}y}$=logax-logay
C.$\frac{lo{g}_{a}x}{lo{g}_{a}y}=lo{g}_{a}\frac{x}{y}$D.logax-logay=$lo{g}_{a}\frac{x}{y}$

查看答案和解析>>

同步练习册答案