分析 (1)以A为坐标原点,AD,AB,AP所在直线为x,y,z轴,建立空间直角坐标系,利用向量法能求出CE与PD所成角的余弦值.
(2)求出平面CDE的法向量,利用向量法能求出λ的值.
解答 解:(1)如图,以A为坐标原点,AD,AB,AP所在直线为x,y,z轴,建立空间直角坐标系,
则C(1,1,0)、P(0,0,2)、D(1,0,0)、E(0,$\frac{1}{2}$,1),…(2分)
$\overrightarrow{CE}$=(-1,-$\frac{1}{2}$,1),$\overrightarrow{PD}$=(1,0,-2),![]()
∴cos<$\overrightarrow{CE}$,$\overrightarrow{PD}$>=$\frac{\overrightarrow{CE}•\overrightarrow{PD}}{|\overrightarrow{CE}|•|\overrightarrow{PD}|}$=$\frac{-1-2}{\sqrt{\frac{9}{4}}•\sqrt{5}}$=-$\frac{2\sqrt{5}}{5}$,
∴CE与PD所成角的余弦值为$\frac{2\sqrt{5}}{5}$.…(4分)
(2)点F在棱PC上,且PF=λPC,∴$\overrightarrow{PF}=λ\overrightarrow{PC}$,
∴F(λ,λ,-2λ),$\overrightarrow{BF}$=(λ,λ-1,2-2λ),
又$\overrightarrow{CD}$=(0,-1,0),$\overrightarrow{CE}$=(-1,-$\frac{1}{2}$,1).
设$\overrightarrow{n}=(x,y,z)$为平面CDE的法向量,
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{CD}=-y=0}\\{\overrightarrow{n}•\overrightarrow{CE}=-x-\frac{1}{2}y+z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,0,1),…(6分)
设直线BF与平面CDE所成的角为θ,
则sinθ=|cos<$\overrightarrow{BF}$,$\overrightarrow{n}$>|=$\frac{2-λ}{\sqrt{{λ}^{2}+(λ-1)^{2}+(2-2λ)^{2}}-\sqrt{2}}$=$\frac{2-λ}{\sqrt{2}•\sqrt{6{λ}^{2}-10λ+5}}$,…(8分)
令t=2-λ,则t∈[1,2],∴sinθ=$\frac{t}{\sqrt{2}•\sqrt{6{t}^{2}-14t+9}}$=$\frac{\sqrt{2}}{2}-\frac{1}{\sqrt{\frac{9}{{t}^{2}}-\frac{14}{t}+6}}$,
当$\frac{1}{t}=\frac{7}{9}$,即t=$\frac{9}{7}$∈[1,2]时,$\frac{9}{{t}^{2}}-\frac{14}{t}+6$有最小值$\frac{5}{9}$,此时sinθ取得最大值为$\frac{3\sqrt{10}}{10}$,
即BF与平面CDE所成的角最大,此时$λ=2-t=2-\frac{9}{7}$=$\frac{5}{7}$,即λ的值为$\frac{5}{7}$. …(10分)
点评 本题考查线线面的余弦值的求法,考查实数值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com