精英家教网 > 高中数学 > 题目详情

【题目】在极坐标系中,射线与圆交于点,椭圆的方程为,以极点为原点,极轴为轴正半轴建立平面直角坐标系

1)求点的直角坐标和椭圆的参数方程;

2)若为椭圆的下顶点,为椭圆上任意一点,求的取值范围

【答案】1为参数).2

【解析】

1)由题意,可得点A的极坐标为,进而得到点A的直角坐标, 又由极坐标与直角坐标的互化公式,求得曲线的直角坐标方程,进而得到其对应的参数方程;

2)设,结合向量的数量积的运算公式和三角函数的性质,即可求解.

1)由题意,射线与圆交于点,可得点A的极坐标为

所以对应的直角坐标为

又由

因为,所以

椭圆的直角坐标方程为,所以对应的参数方程为为参数).

2)设

,所以span>

于是

因为,所以

所以的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若数列{an}满足:对任意nN*,均有an=bn+cn成立,且{bn},{cn}都是等比数列,则称(bn,cn)是数列{an}的一个等比拆分.

1)若an=2n,且(bn,bn+1)是数列{an}的一个等比拆分,求{bn}的通项公式;

2)设(bn,cn)是数列{an}的一个等比拆分,且记{bn},{cn}的公比分别为q1,q2;

①若{an}是公比为q的等比数列,求证:q1=q2=q;

②若a1=1,a2=2,q1q2=﹣1,且对任意nN*,an+13<anan+1an+2+an+2an恒成立,求a3的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}的前n项和为Sn,且a1+a3302S23S1S3的等差中项.

(Ⅰ)求数列{an}的通项公式;

(Ⅱ)设数列{bn}满足,求数列{bn}n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】杨辉,字谦光,南宋时期杭州人.在他1261年所著的《详解九章算法》一书中,辑录了如图所示的三角形数表,称之为开方作法本源图,并说明此表引自11世纪中叶(约公元1050年)贾宪的《释锁算术》,并绘画了古法七乘方图”.故此,杨辉三角又被称为贾宪三角”.杨辉三角是一个由数字排列成的三角形数表,一般形式如下:

基于上述规律,可以推测,当时,从左往右第22个数为_____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中曲线的参数方程为为参数),以为极点,轴的正半轴为极轴,建立极坐标系,直线的极坐标方程为.

1)求曲线的普通方程以及直线的直角坐标方程;

2)将曲线向左平移2个单位,再将曲线上的所有点的横坐标缩短为原来的,得到曲线,求曲线上的点到直线的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,且离心率为.直线轴正半轴和轴分别交于点,与椭圆分别交于点,各点均不重合且满足.

1)求椭圆的标准方程;

2)若,试证明:直线过定点并求此定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是函数(其中常数)图象上的两个动点,点,若的最小值为0,则函数的最大值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个极值点(为自然对数的底数).

(1)求实数的取值范围;

(2)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为了解本市万名学生的汉字书写水平,在全市范围内进行了汉字听写考试,发现其成绩服从正态分布,现从某校随机抽取了名学生,将所得成绩整理后,绘制出如图所示的频率分布直方图.

1)估算该校名学生成绩的平均值(同一组中的数据用该组区间的中点值作代表);

2)求这名学生成绩在内的人数;

3)现从该校名考生成绩在的学生中随机抽取两人,该两人成绩排名(从高到低)在全市前名的人数记为,求的分布列和数学期望.

参考数据:若,则

查看答案和解析>>

同步练习册答案