精英家教网 > 高中数学 > 题目详情
1.若$\frac{1}{a}$<$\frac{1}{b}$<0,给出下列不等式:①a+b<ab②|a|>|b|③a<b④$\frac{b}{a}$+$\frac{a}{b}$>2上述式子恒成立的有(  )
A.1个B.2个C.3个D.4个

分析 由已知中$\frac{1}{a}$<$\frac{1}{b}$<0,结合不等式的基本性质及基本不等式,分别判断四个式子的正误,可得答案.

解答 解:∵$\frac{1}{a}$<$\frac{1}{b}$<0,
∴b<a<0,
①中,a+b<0,ab>0,故a+b<ab,故正确;
②中,|a|<|b|,故错误;
③中,b<a<0,故错误;
④中,$\frac{b}{a}$,$\frac{a}{b}$均为正且不相等,故$\frac{b}{a}$+$\frac{a}{b}$>2$\sqrt{\frac{b}{a}•\frac{a}{b}}$,故正确;
故上述式子恒成立的有2个,
故选:B

点评 本题考查的知识点是不等式的基本性质,熟练掌握不等式的基本性质是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知复数z=(m2+5m+6)+(m2-2m-15)i
(1)若复数z为纯虚数时,求m的值.
(2)当m为何值时,复数z与复数12+16i互为共轭复数?
(3)当m为何值时,复数z在复平面内对应的点在x轴上方?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.对于$f(x)={cos^2}({x-\frac{π}{12}})+{sin^2}({x+\frac{5π}{12}})-1$,下列选项中正确的是(  )
A.f(x)关于直线$x=\frac{π}{3}$对称B.f(x)是偶函数
C.f(x)的最小正周期为2πD.f(x)的最大值为1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=$\frac{{x}^{2}}{2(x-1)}$,给定数列{an},其中a1=a>1,an+1=f(an)(n∈N+).
(1)若{an}为常数列,求a的值;
(2)判断an与2的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.给出下列图形:①角;②三角形;③平行四边形;④梯形;⑤四边形.其中表示平面图形的个数为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知Sn={A|A=(a1,a2,a3…ai…,an),ai=2014或2015,i=1,2,3…,n}(n≥2),对于U,V∈Sn,d(U,V)表示U和V中相对应的元素不同的个数.
(1)令U=(2015,2015,2015,2015,2015),存在m个V∈S5,使得d(U,V)=2,则m=10;
(2)令U=(a1,a2,a3…an),若V∈Sn,则所有d(U,V)之和为n•2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下面是关于复数z=$\frac{2}{1+i}$的四个命题:
p1:复数z的共轭复数为1+i;
p2:复数z的虚部为1;
p3:复数z对应的点在第四象限; 
p4:|z|=$\sqrt{2}$.
其中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,设a,b,c分别为角A,B,C的对边,已知acosB=bcosA,cosC=$\frac{3}{4}$.
(1)若a+c=2+$\sqrt{2}$,求△ABC的面积;
(2)设△ABC的周长为L,面积为S,求y=L-$\frac{4\sqrt{7}}{7}$S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设tanx=2,则cos2x-2sinxcosx=-$\frac{3}{5}$.

查看答案和解析>>

同步练习册答案