精英家教网 > 高中数学 > 题目详情
12.对于$f(x)={cos^2}({x-\frac{π}{12}})+{sin^2}({x+\frac{5π}{12}})-1$,下列选项中正确的是(  )
A.f(x)关于直线$x=\frac{π}{3}$对称B.f(x)是偶函数
C.f(x)的最小正周期为2πD.f(x)的最大值为1

分析 利用三角恒等变换化简函数的解析式,再利用余弦函数的图象和性质,逐一判断各个选项是否正确,从而得出结论.

解答 解:对于$f(x)={cos^2}({x-\frac{π}{12}})+{sin^2}({x+\frac{5π}{12}})-1$=$\frac{1+cos(2x-\frac{π}{6})}{2}$+$\frac{1-os(2x+\frac{5π}{6})}{2}$-1=$\frac{1}{2}$cos(2x-$\frac{π}{6}$)-$\frac{1}{2}$cos(2x+$\frac{5π}{6}$)
=$\frac{1}{2}$cos(2x-$\frac{π}{6}$)+$\frac{1}{2}$cos(2x-$\frac{π}{6}$)=cos(2x-$\frac{π}{6}$),
令x=$\frac{π}{3}$,求得f(x)=0,不是最值,故f(x)的图象不关于直线$x=\frac{π}{3}$对称,故A不正确.
由于不满足f(-x)=f(x),故函数不是偶函数,故B不正确.
函数的最小正周期为$\frac{2π}{2}$=π,故C不正确.
函数的最大值为1,故D正确,
故选:D.

点评 本题主要考查三角恒等变换,余弦函数的图象和性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ax2-lnx(a∈R).
(1)若x=1是函数y=f(x)的极值点,求a的值;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)在实数集R上是单调递增函数,且对任意的实数x1,x2,都有f(x1+x2)=f(x1)f(x2).
(1)求f(0)的值;
(2)设f(x)的反函数为f-1(x)(x∈A),求证:对于任意的x1,x2∈A,都有f-1(x1x2)=f-1(x1)+f-1(x2);
(3)求证:对于任意的实数x,都有f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数$y=sin(2x-\frac{π}{3})$的最小正周期为π;递增区间为[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$],k∈z;对称轴方程为x=kπ+$\frac{5π}{12}$,k∈z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,四边形ABCD满足$\overrightarrow{AB}$•$\overrightarrow{AC}$=$\overrightarrow{DB}$•$\overrightarrow{DC}$=0,|$\overrightarrow{AB}$|=2|$\overrightarrow{DC}$|=2,若M是BC的中点,则$\overrightarrow{AB}$•$\overrightarrow{AM}$-$\overrightarrow{DM}$•$\overrightarrow{DC}$=(  )
A.1B.-1C.-$\frac{3}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若数列{an}满足:a1=$\frac{3}{2}$,an=$\frac{1}{2}-\frac{2}{{2{a_{n-1}}+1}}$(n=2,3,4,…),且有一个形如an=Asin(ωn+φ)的通项公式,其中A,ω,φ均为实数,且ω>0,则此通项公式an可以为(  )
A.an=$\frac{3}{2}sin({\frac{2π}{3}n-\frac{π}{6}})$B.an=$\sqrt{3}sin({\frac{2π}{3}n+\frac{2π}{3}})$
C.an=-$\frac{3}{2}sin({\frac{2π}{3}n+\frac{5π}{6}})$D.an=$\sqrt{3}sin({\frac{2π}{3}n-\frac{π}{3}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设复数z的共轭复数是$\overline{z}$,z=3+i,则$\frac{1}{\overline{z}}$等于(  )
A.3+iB.3-iC.$\frac{3}{10}$i+$\frac{1}{10}$D.$\frac{3}{10}$+$\frac{1}{10}$i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若$\frac{1}{a}$<$\frac{1}{b}$<0,给出下列不等式:①a+b<ab②|a|>|b|③a<b④$\frac{b}{a}$+$\frac{a}{b}$>2上述式子恒成立的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求函数y=$\sqrt{1-2cosx}$+lg(2sinx-1)的定义域.

查看答案和解析>>

同步练习册答案