精英家教网 > 高中数学 > 题目详情
已知集合A={x|x2-2x-3≤0,x∈R},B={x2-2mx+m2-1≤0,x∈R,m∈R}
(1)若A∩B={x|0≤x≤2},求实数m的取值;
(2)若A⊆∁RB,求实数m的取值范围.
考点:集合关系中的参数取值问题,交集及其运算
专题:集合
分析:(1)首先将集合A,B进行化简,然后根据A∩B={x|0≤x≤2},建立不等关系,求出实数m的值即可;
(2)首先求出∁RB,然后根据A⊆∁RB,建立不等关系,求实数m的取值范围即可.
解答: 解:由于集合A={x|x2-2x-3≤0,x∈R}={x|-1≤x≤3},
B={x2-2mx+m2-1≤0,x∈R,m∈R}={x|m-1≤x≤m+1,m∈R},
则∁RB={x|x<m-1或x>m+1,m∈R};
(1)若A∩B={x|0≤x≤2},
m-1=0
m+1=2

解得m=1;
(2)又∁RB={x|x<m-1或x>m+1,m∈R},
若A⊆∁RB,
m-1>3
m+1<-1

解得m>4或m<-2.
点评:本题主要考查集合关系的应用,属于基础题,解答此题的关键是首先将集合A,B进行化简,并注意对区间端点值等号的取舍问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若四边ABCD满足
AB
+
CD
=
0
,(
AB
-
DB
)•
AB
=0,则该四边形是(  )
A、菱形B、矩形
C、直角梯形D、正方形

查看答案和解析>>

科目:高中数学 来源: 题型:

若向量
OA
=(1,-3),|
OA
|=|
OB
|,
OA
OB
=0,则|
AB
|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某学生社团在对本校学生学习方法开展问卷调查的过程中发现,在回收上来的1000份有效问卷中,同学们背英语单词的时间安排共有两种:白天背和晚上睡前背.为了研究背单词时间安排对记忆效果的影响,该社团以5%的比例对这1000名学生按时间安排类型进行分层抽样,并完成一项实验.实验方法是,使两组学生记忆40个无意义音节(如XIQ、GEH),均要求在刚能全部记清时就停止识记,并在8小时后进行记忆检测.不同的是,甲组同学识记结束后一直不睡觉,8小时后测验;乙组同学识记停止后立刻睡觉,8小时后叫醒测验.两组同学识记停止8小时后的准确回忆(保持)情况如图(区间含左端点而不含右端点).

(1)估计这1000名被调查学生中停止后8小时40个音节的保持率不小于60%的人数;
(2)从乙组准确回忆单词个数在[4,20)个范围内的学生中随机选2人,求能准确回忆[16,20)个单词至少有一人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sna1= - 
2
3
,满足Sn+
1
Sn
+2=an(n≥2)

(Ⅰ)分别计算S1,S2,S3,S4的值并归纳Sn的表达式(不需要证明过程);
(Ⅱ)记f(1)=-a1,f(n)=-a3n(n≥2),证明:f(1)+f(2)+f(3)+…+f(n)<
13
18
(n∈N*)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},{bn},a1=1,an=an-1+2n-1,bn=
an-1+1
anan+1
,Sn为数列{bn}的前n项和,Tn为数列{Sn}的前n项和.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{bn}的前n项和Sn
(Ⅲ)求证:Tn
n
2
-
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)的定义域为D,若存在闭区间[a,b]⊆D,使得函数f(x)满足:(1)f(x)在[a,b]内是单调函数;(2)f(x)在[a,b]上的值域为[ka,kb],则称区间[a,b]为y=f(x)的“和谐k区间”.
(Ⅰ)试判断函数g(x)=x2,h(x)=lnx是否存在“和谐2区间”,若存在,找出一个符合条件的区间;若不存在,说明理由.
(Ⅱ)若函数f(x)=ex存在“和谐k区间”,求正整数k的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=cosx+
x2
2
-1.
(Ⅰ)求证:当x≥0时,f(x)≥0;
(Ⅱ)若a∈R,证明:当a≥1时,eax≥sinx-cosx+2对任意的x≥0恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
1
2
(2a+1)x2+(a2+a)x.
(I)若a=1,求f(x)在区间[0,3]上的值域;
(Ⅱ)若g(x)=f(x)+ax2-a2x,求函数g(x)的极值点.

查看答案和解析>>

同步练习册答案