精英家教网 > 高中数学 > 题目详情
为椭圆上任意一点,为左右焦点.如图所示:

(1)若的中点为,求证
(2)若,求的值.
(1))证明:在 中,为中位线

(2)

试题分析:(1)由椭圆定义知,则,由条件知点分别是的中点,所以的中位线,则,从而命题得证;(2)根据椭圆定义,在中有,又由条件,从这些信息中可得到提示,应从余弦定理入手,考虑到,所以需将两边平方,得,将其代入余弦定理,得到关于的方程,从而可得解.
试题解析:(1)证明:在 中,为中位线
           5分
(2) ,
中,
 
                                         12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆两焦点坐标分别为,,且经过点
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知点,直线与椭圆交于两点.若△是以为直角顶点的等腰直角三角形,试求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分)点P为圆上一个动点,M为点P在y轴上的投影,动点Q满足
(1)求动点Q的轨迹C的方程;
(2)一条直线l过点,交曲线C于A、B两点,且A、B同在以点D(0,1)为圆心的圆上,求直线l的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,焦点在x轴上,离心率为,且经过点,直线交椭圆于不同的两点A,B.
(Ⅰ)求椭圆的方程;
(Ⅱ)求m的取值范围;
(Ⅲ)若直线不过点M,求证:直线MA、MB与x轴围成一个等腰三角形

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆E:=1()过点M(2,), N(,1),为坐标原点
(I)求椭圆E的方程;
(II)是否存在以原点为圆心的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切,过点P(4,0)且不垂直于x轴直线与椭圆C相交于A、B两点.
(1)求椭圆C的方程;
(2)求的取值范围;
(3)若B点关于x轴的对称点是E,证明:直线AE与x轴相交于定点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为
(Ⅰ)求椭圆的方程;
(Ⅱ)已知动直线与椭圆相交于两点. ①若线段中点的横坐标为,求斜率的值;②若点,求证:为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知O为坐标原点,P是曲线上到直线距离最小的点,且直线OP是双曲线 的一条渐近线。则的公共点个数是(  )
A.2B.1
C.0D.不能确定,与的值有关

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

分别为双曲线的左、右焦点,为双曲线的左顶点,以为直径的圆交双曲线某条渐过线两点,且满足,则该双曲线的离心率为(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案