19£®ÒÑÖªF£¨1£¬0£©ÎªÒ»¶¨µã£¬P£¨0£¬b£©ÊÇyÖáÉϵÄÒ»¶¯µã£¬xÖáÉϵĵãMÂú×ã$\overrightarrow{PM}$•$\overrightarrow{PF}$=0£¬µãNÂú×ã2$\overrightarrow{PN}$+$\overrightarrow{NM}$=$\vec 0$£®
£¨¢ñ£©ÇóµãNµÄ¹ì¼£ÇúÏßCµÄ·½³Ì£»
£¨¢ò£©¹ýÖ±Ïßl£º2x-y+1=0µÄµãQ×÷ÇúÏßCµÄÇÐÏßQA£¬QB£¬Çеã·Ö±ðΪA£¬B£¬ÇóÖ¤£ºµ±µãQÔÚÖ±ÏßlÉÏÔ˶¯Ê±£¬Ö±ÏßABºã¹ý¶¨µãS£®

·ÖÎö £¨¢ñ£©ÉèM£¨a£¬0£©£¬ÇóµÃÏòÁ¿µÄ×ø±ê£¬ÔËÓÃÏòÁ¿µÄÊýÁ¿»ýµÄ×ø±ê±íʾºÍÏòÁ¿¹²ÏßµÄ×ø±ê±íʾ£¬»¯¼òÕûÀí¼´¿ÉµÃµ½ËùÇó¹ì¼£·½³Ì£»
£¨¢ò£©ÇóµÃÇúÏßÉÏ·ÇÔ­µãÍâÇÐÏßµÄбÂÊ£¬ÒÔ¼°ÇÐÏß·½³Ì£¬ÇóµÃÇеãÏÒABµÄ·½³Ì£¬½áºÏQÔÚÖ±ÏßlÉÏ£¬¿ÉµÃ¶¨µãSµÄ×ø±ê£»ÔÙÓÉÔ­µã×÷ÇÐÏßQA£¬QB£¬ÇóµÃABµÄ·½³Ì£¬¼´¿ÉÅж϶¨µãSµÄ×ø±ê£®

½â´ð ½â£º£¨¢ñ£©ÉèM£¨a£¬0£©£¬Ôò$\overrightarrow{PM}$=£¨a£¬-b£©£¬$\overrightarrow{PF}$=£¨1£¬-b£©£¬
ÓÉ$\overrightarrow{PM}$•$\overrightarrow{PF}$=0¿ÉµÃa+b2=0£¬
ÉèN£¨x£¬y£©£¬ÓɵãNÂú×ã2$\overrightarrow{PN}$+$\overrightarrow{NM}$=$\vec 0$£®¼´$\overrightarrow{PN}$+$\overrightarrow{PM}$=$\overrightarrow{0}$£¬
Ôòa+x=0£¬y-2b=0£¬
¼´ÓÐÇúÏßCµÄ·½³ÌΪy2=4x£»
£¨¢ò£©Ö¤Ã÷£º£¨1£©y£¾0ʱ£¬y=2$\sqrt{x}$£¬y¡ä=$\frac{1}{\sqrt{x}}$=$\frac{2}{y}$£¬
y£¼0ʱ£¬y=-2$\sqrt{x}$£¬y¡ä=-$\frac{1}{\sqrt{x}}$=$\frac{2}{y}$£¬
ÔòÇúÏßCÉϳýÔ­µãÍâÈÎÒ»µã£¨x£¬y£©´¦µÄÇÐÏßµÄбÂʾùΪ$\frac{2}{y}$£¬
ÉèQ£¨x0£¬y0£©£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬y1y2¡Ù0£¬
¿ÉµÃÇÐÏßQAµÄ·½³ÌΪ2x1-y1y+2x=0£¬
ÇÐÏßQBµÄ·½³ÌΪ2x2-y2y+2x=0£¬
´úÈëQ£¬¿ÉµÃ2x1-y1y0+2x0=0£¬ÇÒ2x2-y2y0+2x0=0£¬
¼´ÓÐABµÄ·½³ÌΪ2x-yy0+2x0=0£¬
ÓÖ2x0-y0+1=0£¬
¿ÉµÃ2x-1+y0£¨1-y£©=0£¬
Áî2x-1=0£¬ÇÒ1-y=0£¬½âµÃx=$\frac{1}{2}$£¬y=1£®
¼´ÓÐABºã¹ý¶¨µãS£¨$\frac{1}{2}$£¬1£©£»
£¨2£©ÈôÇеãAΪԭµã£¬ÔòQ£¨0£¬1£©£¬
ÉèQB£ºy=kx+1ÓëÅ×ÎïÏßy2=4xÏàÇУ¬Ôòk=1£¬
ÇеãB£¨1£¬2£©£¬ABµÄ·½³ÌΪy=2x£¬Ò²¹ýµãS£¨$\frac{1}{2}$£¬1£©£¬
×ÛÉϿɵ㬵±µãQÔÚÖ±ÏßlÉÏÔ˶¯Ê±£¬Ö±ÏßABºã¹ý¶¨µãS£¨$\frac{1}{2}$£¬1£©£®

µãÆÀ ±¾Ì⿼²é¹ì¼£·½³ÌµÄÇ󷨣¬Í¬Ê±¿¼²éÏòÁ¿µÄÊýÁ¿»ýµÄ×ø±ê±íʾºÍÏòÁ¿µÄ¹²ÏßµÄ×ø±êÔËË㣬¿¼²éÖ±ÏߺÍÅ×ÎïÏßÏàÇеÄÇÐÏß·½³ÌºÍÇеãÏÒ·½³ÌµÄÇ󷨣¬ÒÔ¼°Ö±Ïߺã¹ý¶¨µãµÄÎÊÌ⣬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÔÚ¼«×ø±êϵÖУ¬ÒÔC£¨1£¬¦Ð£©ÎªÔ²ÐÄ£¬¾­¹ýµãP£¨$\sqrt{2}$£¬$\frac{3¦Ð}{4}$£©µÄÔ²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ=-2cos¦È£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÊýÁÐ{an}Âú×ãan+1=$\left\{\begin{array}{l}{2{a}_{n}£¬£¨0¡Üan£¼\frac{1}{2}£©}\\{2{a}_{n}-1£¬£¨\frac{1}{2}¡Ü{a}_{n}£¼1£©}\end{array}\right.$£¬Èôa1=$\frac{6}{7}$£¬Ôòa2010=$\frac{3}{7}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÔÚ¡÷ABCÖУ¬¡ÏA=90¡ã£¬AB=1£¬BC=$\sqrt{5}$£¬µãM£¬NÂú×ã$\overrightarrow{AM}=¦Ë\overrightarrow{AB}$£¬$\overrightarrow{AN}=£¨1-¦Ë£©\overrightarrow{AC}$£¬¦Ë¡ÊR£¬Èô$\overrightarrow{BN}•\overrightarrow{CM}=-2$£¬Ôò¦Ë=$\frac{2}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÔË«ÇúÏß$\frac{{x}^{2}}{10}$-$\frac{{y}^{2}}{15}$=1µÄÓÒ½¹µãΪԲÐÄ£¬ÇÒÓëÆä½¥½üÏßÏàÇеÄÔ²µÄ·½³ÌÊÇ£¨¡¡¡¡£©
A£®x2+y2-10x+10=0B£®x2+y2-10x+15=0C£®x2+y2+10x+15=0D£®x2+y2+10x+10=0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÉèµãPΪ˫ÇúÏßC1£º$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©ºÍÔ²C2£ºx2+y2=a2+b2µÄÒ»¸ö½»µã£¬F1£¬F2Ϊ˫ÇúÏßC1µÄ×ó¡¢ÓÒ½¹µã£®Èô2¡ÏPF1F2=¡ÏPF2F1£¬ÔòË«ÇúÏßC1µÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\sqrt{3}$+1B£®$\sqrt{2}$+1C£®$\sqrt{3}$D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®µãPΪ˫ÇúÏß$\frac{x^2}{a^2}-\frac{y^2}{9}$=1µÄÓÒÖ§ÉÏÈÎÒâÒ»µã£¬ÓÉPÏòÁ½Ìõ½¥½üÏß×÷ƽÐÐÏß½»½¥½üÏßÓÚM¡¢NÁ½µã£¬ÈôƽÐÐËıßÐÎOMPNÃæ»ýΪ3£¬ÔòË«ÇúÏßµÄÀëÐÄÂÊΪ$\frac{\sqrt{13}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®Èôº¯Êýf£¨x£©Óëg£¨x£©µÄͼÏó¹ØÓÚÖ±Ïßy=x¶Ô³Æ£¬ÒÑÖªº¯Êýf£¨x£©=${£¨{\frac{1}{2}}£©^{-x}}$£¬Ôòf£¨2£©+g£¨2£©µÄֵΪ£¨¡¡¡¡£©
A£®2B£®3C£®4D£®5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®{an}ÊǸ÷Ïî¾ùΪÕýÊýµÄµÈ±ÈÊýÁУ¬ÒÑa1=2£¬a3=8£®
£¨¢ñ£©ÇóÊý{an}µÄͨÏʽ£»          
£¨¢ò£©ÇóÊý{log2an}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸