精英家教网 > 高中数学 > 题目详情
11.执行如图所示的程序框图,若输出的$S=\frac{25}{24}$,则判断框内填入的条件可以是(  )
A.k≥7B.k>7C.k≤8D.k<8

分析 模拟执行程序框图,依次写出每次循环得到的k,S的值,当k=8时,退出循环,输出S的值为$\frac{25}{24}$,故判断框图可填入的条件是k<8.

解答 解:模拟执行程序框图,可得:
S=0,k=0
满足条件,k=2,S=$\frac{1}{2}$
满足条件,k=4,S=$\frac{1}{2}$+$\frac{1}{4}$
满足条件,k=6,S=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$
满足条件,k=8,S=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+$\frac{1}{8}$=$\frac{25}{24}$.
由题意,此时应不满足条件,退出循环,输出S的值为$\frac{25}{24}$.
结合选项可得判断框内填入的条件可以是:k<8.
故选:D.

点评 本题考查了当型循环结构的程序框图,根据框图的流程判断程序运行的S值是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)的定义域为实数集R,及整数k、T;
(1)若函数f(x)=2xsin(πx),证明f(x+2)=4f(x);
(2)若f(x+T)=k•f(x),且f(x)=axφ(x)(其中a为正的常数),试证明:函数φ(x)为周期函数;
(3)若f(x+6)=$\sqrt{2}$f(x),且当x∈[-3,3]时,f(x)=$\frac{1}{10}x$(x2-9),记Sn=f(2)+f(6)+f(10)+…+f(4n-2),n∈N+,求使得S1、S2、S3、…、Sn小于1000都成立的最大整数n.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,已知tan$\frac{A+B}{2}$=sinC,给出以下四个结论:①$\frac{tanA}{tanB}$=1;②1<sinA+sinB$≤\sqrt{2}$;③sin2A+cos2B=1;④cos2A+cos2B=sin2C,其中正确的结论是②④.(写出所有正确结论的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x2-x|x-a|-3a,a>0.
(Ⅰ)若a=1,求f(x)的单调区间;
(Ⅱ)若函数f(x)恰有两个不同的零点x1,x2,求$|{\frac{1}{x_1}-\frac{1}{x_2}}|$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.给定min{a,b}=$\left\{\begin{array}{l}{a,a≤b}\\{b,b<a}\end{array}\right.$,已知函数f(x)=min{x,x2-4x+4}+4,若动直线y=m与函数y=f(x)的图象有3个交点,它们的横坐标分别为x1,x2,x3,则x1+x2+x3的范围为(4,5).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}是公差为2的等差数列.
(1)a1,a3,a4成等比数列,求a1的值;
(2)设a1=-19,数列{an}的前n项和为Sn.数列{bn}满足${b_1}=1,{b_{n+1}}-{b_n}={({\frac{1}{2}})^n}$,记cn=Sn+2n-1•bn(n∈N*),求数列{cn}的最小项cn0(即cn0≤cn对任意n∈N*成立).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在设计求解一元一次方程ax+b=0(a,b为常数)的算法时,需要用条件语句判断a≠0?.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知正项数列{an}的前n项和为Sn,且Sn,an,$\frac{1}{2}$成等差数列.
(1)求数列{an}的通项公式an
(2)若bn=log2an+3,求数列$\left\{{\frac{1}{{{b_n}{b_{n+1}}}}}\right\}$的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.化简:$\sqrt{(1+si{n}^{2}\frac{x}{2})^{2}+(1-si{n}^{2}\frac{x}{2})^{2}-4si{n}^{2}\frac{x}{2}}$=$\sqrt{2}co{s}^{2}\frac{x}{2}$.

查看答案和解析>>

同步练习册答案