分析 (1)由题知:$2{a_n}={S_n}+\frac{1}{2}$,利用递推关系、等比数列的通项公式即可得出.
(2)bn=n+1,$\frac{1}{{{b_n}{b_{n+1}}}}=\frac{1}{{({n+1})({n+2})}}=\frac{1}{n+1}-\frac{1}{n+2}$,利用“裂项求和”即可得出.
解答 解:(1)由题知:$2{a_n}={S_n}+\frac{1}{2}$,∴$2{a_{n-1}}={S_{n-1}}+\frac{1}{2}({n≥2})$,
两式相减,化简得:an=2an-1(n≥2),
故{an}是等比数列,且公比q=2,而n=1时,${a_1}=\frac{1}{2}$.
∴${a_n}=\frac{1}{2}•{2^{n-1}}={2^{n-2}}$.
(2)bn=n+1,$\frac{1}{{{b_n}{b_{n+1}}}}=\frac{1}{{({n+1})({n+2})}}=\frac{1}{n+1}-\frac{1}{n+2}$,
∴Tn=$(\frac{1}{2}-\frac{1}{3})$+$(\frac{1}{3}-\frac{1}{4})$+…+$(\frac{1}{n+1}-\frac{1}{n+2})$=$\frac{1}{2}-\frac{1}{n+2}$.
点评 本题考查了递推关系、等比数列的通项公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | k≥7 | B. | k>7 | C. | k≤8 | D. | k<8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | fs(4)=fs(5) | B. | fs(4)=fT(5) | C. | fs(1)+fs(4)=fT(5)+fT(8) | D. | fs(2)+fs(3)=fT(4) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com