精英家教网 > 高中数学 > 题目详情
15.已知正项数列{an}的前n项和为Sn,且满足Sn=2an-$\frac{1}{2}$.
(1)证明;数列{an}是等比数列;
(2)设bn=log2a2n+1,求数列{$\frac{1}{{b}_{n}{b}_{n+1}}$}的前n项和Tn

分析 (1)通过Sn=2an-$\frac{1}{2}$与Sn-1=2an-1-$\frac{1}{2}$(n≥2)作差,进而整理即得结论;
(2)通过(1)可知an=2n-2,进而可知bn=2n-1,裂项可知$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),进而并项相加即得结论.

解答 (1)证明:∵Sn=2an-$\frac{1}{2}$,
∴Sn-1=2an-1-$\frac{1}{2}$(n≥2),
两式相减得:an=2an-2an-1,即an=2an-1
又∵a1=2a1-$\frac{1}{2}$,即a1=$\frac{1}{2}$,
∴数列{an}是首项为$\frac{1}{2}$、公比为2的等比数列;
(2)解:由(1)可知an=$\frac{1}{2}$•2n-1=2n-2
∵bn=log2a2n+1=log222n-1=2n-1,
∴$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
∴Tn=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)=$\frac{1}{2}$(1-$\frac{1}{2n+1}$)=$\frac{n}{2n+1}$.

点评 本题考查数列的通项及前n项和,考查运算求解能力,考查裂项相消法,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.曲线y=2ex+x2在点(0,2)处的切线方程为y=2x+2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.给定min{a,b}=$\left\{\begin{array}{l}{a,a≤b}\\{b,b<a}\end{array}\right.$,已知函数f(x)=min{x,x2-4x+4}+4,若动直线y=m与函数y=f(x)的图象有3个交点,它们的横坐标分别为x1,x2,x3,则x1+x2+x3的范围为(4,5).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在设计求解一元一次方程ax+b=0(a,b为常数)的算法时,需要用条件语句判断a≠0?.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.甲、乙、丙3名教师安排在10月1日至5日的5天中值班,要求每人值班一天且每天至多安排一人.其中甲不在10月1日值班且丙不在10月5日值班,则不同的安排方法有(  )种.
A.36B.39C.42D.45

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知正项数列{an}的前n项和为Sn,且Sn,an,$\frac{1}{2}$成等差数列.
(1)求数列{an}的通项公式an
(2)若bn=log2an+3,求数列$\left\{{\frac{1}{{{b_n}{b_{n+1}}}}}\right\}$的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=2sinx•sin($\frac{π}{3}$-x).
(1)求函数f(x)的对称轴方程;
(2)如果0≤x≤$\frac{π}{2}$,求f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知指数函数y=g(x)满足:g($\frac{1}{2}$)=$\sqrt{2}$,定义域为R的函数f(x)=$\frac{1-g(x)}{m+2g(x)}$是奇函数.
(1)确定y=f(x)和y=g(x)的解析式;
(2)判断函数f(x)的单调性,并用定义证明;
(3)若对于任意x∈[-5,5],都有f(1-x)+f(1-2x)>0成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.a、b、c、d、e是从集合{1,2,3,4,5}中任取的5个元素(不允许重复),则abc+de为奇数的概率为(  )
A.$\frac{4}{15}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案