精英家教网 > 高中数学 > 题目详情
10.已知等比数列{an}的前n项和为Sn,若S2n=4(a1+a3+…+a2n-1),a1•a2•a3=27,则log3a1+log3a2+…+log3a20=(  )
A.210B.190C.220D.242

分析 由等比数列的通项公式得a2=3,在S2n=4(a1+a3+…+a2n-1)中,由n=1,得a1=1,q=3,从而an=1×3n-1=3n-1,进而log3a1+log3a2+…+log3a20=$lo{g}_{3}({3}^{0}×3×{3}^{2}×…×{3}^{19})$,由此能求出结果.

解答 解:∵等比数列{an}的前n项和为Sn
S2n=4(a1+a3+…+a2n-1),a1•a2•a3=27,
∴利用等比数列的性质可得,a1a2a3=a23=27 即a2=3,
∵S2n=4(a1+a3+…+a2n-1
∴n=1时有,S2=a1+a2=4a1,解得a1=1,q=3,
∴an=1×3n-1=3n-1
∴log3a1+log3a2+…+log3a20=log3(a1×a2×…×a20
=$lo{g}_{3}({3}^{0}×3×{3}^{2}×…×{3}^{19})$=$lo{g}_{3}{3}^{190}$=190.
故选:B.

点评 本题考查了等差数列的通项公式,考查了等差数列的前n项和,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.阅读右面的程序框图,当该程序运行后输出的x的值是13.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的前n项和Sn=n2+2n-1.
(1)求数列{an}的通项公式;
(2)设bn=2${\;}^{{a}_{n}}$+2n,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某市为了解各校(同学)课程的教学效果,组织全市各学校高二年级全体学生参加了国学知识水平测试,测试成绩从高到低依次分为A、B、C、D四个等级,随机调阅了甲、乙两所学校各60名学生的成绩,得到如图所示分布图:

(Ⅰ)试确定图中实数a与b的值;
(Ⅱ)若将等级A、B、C、D依次按照90分、80分、60分、50分转换成分数,试分别估计两校学生国学成绩的均值;
(Ⅲ)从两校获得A等级的同学中按比例抽取5人参加集训,集训后由于成绩相当,决定从中随机选2人代表本市参加省级比赛,求两人来自同一学校的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若复数z满足zi=1+2i(i为虚数单位),则复数z=2-i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在区间[0,1]上随机选取两个数x和y,则y>2x的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.对任意实数a、b定义运算?:a?b=$\left\{\begin{array}{l}{b,a-b≥1}\\{a,a-b<1}\end{array}\right.$,设f(x)=(x2-1)?(4+x),若函数y=f(x)+k有三个零点,则实数k的取值范围是(  )
A.(-1,3]B.[-3,1]C.[-1,2)D.[-2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知圆锥母线长为5,底面圆半径长为4,点M是母线PA的中点,AB是底面圆的直径,点C是弧AB的中点;
(1)求三棱锥P-ACO的体积;
(2)求异面直线MC与PO所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.执行如图所示的程序框图,则输出S的值为(  )
A.16B.32C.64D.1024

查看答案和解析>>

同步练习册答案