精英家教网 > 高中数学 > 题目详情
17.平面向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,$\overrightarrow{a}$=(0,3),|$\overrightarrow{b}$|=2,若λ∈R,则|λ$\overrightarrow{a}$+$\overrightarrow{b}$|的最小值是$\sqrt{3}$.

分析 对|λ$\overrightarrow{a}$+$\overrightarrow{b}$|取平方,将问题转化为求关于λ的二次函数得最值问题解决.

解答 解:$|\overrightarrow{a}|$=3,$\overrightarrow{a}•\overrightarrow{b}$=3×2×cos60°=3.
∴|λ$\overrightarrow{a}$+$\overrightarrow{b}$|2=${λ}^{2}{\overrightarrow{a}}^{2}+{\overrightarrow{b}}^{2}+2λ\overrightarrow{a}•\overrightarrow{b}$=9λ2+6λ+4=9(λ+$\frac{1}{3}$)2+3.
∴当$λ=-\frac{1}{3}$时,|λ$\overrightarrow{a}$+$\overrightarrow{b}$|2取得最小值3.
∴|λ$\overrightarrow{a}$+$\overrightarrow{b}$|的最小值为$\sqrt{3}$.
故答案为:$\sqrt{3}$.

点评 本题考查了平面向量的数量积运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.设0<a<b,过两定点A(a,0)和B(b,0)分别引直线l和m,使之与抛物线y2=x有四个不同的交点,当这四点共圆时,这种直线l和m的交点P的轨迹为2x-(a+b)=0,(y≠0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数$f(x)=\sqrt{3}sinxcosx+{sin^2}x-\frac{1}{2}$.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求f(x)在区间$[\frac{π}{4},\frac{π}{2}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和为Sn,且a1=1,Sn=Sn-1+an-1+2n-2(n≥2)
(1)求数列{an}的通项公式;
(2)设bn=(2n-1)an+1,记f(n)=b1+b2+…+bn,若 对任意n,(n∈N*),不等式f(n)<λ•an+1成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,四边形OABC,ODEF,OGHI是三个全等的菱形,∠COD=∠FOG=$∠IOA=\frac{π}{3}$,设$\overrightarrow{OD}=\vec a,\overrightarrow{OH}=\vec b$,已知点P在各菱形边上运动,且$\overrightarrow{OP}$=x$\overrightarrow{a}$+y$\overrightarrow{b}$,x,y∈R,则x+y的最大值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知非零平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,“|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|”是“$\overrightarrow{a}$⊥$\overrightarrow{b}$”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知△ABC的内角为A、B、C,其对边分别为a、b、c,已知B为锐角,向量$\overrightarrow m=(2sinB,-\sqrt{3}),\overrightarrow n=(cos2B,2{cos^2}\frac{B}{2}-1)$,且$\overrightarrow m$∥$\overrightarrow n$.
(Ⅰ)求角B的大小及当$b∈[\sqrt{3},2\sqrt{3}]$时,△ABC的外接圆半径R的取值范围;
(Ⅱ)如果b=2,求S△ABC的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.一辆赛车在一个周长为3km的封闭跑道上行驶,跑道由几段直道和弯道组成,图1反应了赛车在“计时赛”整个第二圈的行驶速度与行驶路程之间的关系.

根据图1,有以下四个说法:
①在这第二圈的2.6km到2.8km之间,赛车速度逐渐增加;
②在整个跑道上,最长的直线路程不超过0.6km;
③大约在这第二圈的0.4km到0.6km之间,赛车开始了那段最长直线路程的行驶;
④在图2的四条曲线(注:s为初始记录数据位置)中,曲线B最能符合赛车的运动轨迹.
其中,所有正确说法的序号是①④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=asinωx+bcosωx+1(ab≠0,ω>0)的周期为π,f(x)有最大值4,且f($\frac{π}{6}$)=$\frac{3\sqrt{3}}{2}$+1,求a、b的值.

查看答案和解析>>

同步练习册答案