精英家教网 > 高中数学 > 题目详情
16.下列事件是复合事件的是(  )
A.抛掷一颗均匀的骰子,出现点数是2
B.抛掷一颗均匀的骰子,出现点数是4
C.抛掷一颗均匀的骰子,出现点数是6
D.抛掷一颗均匀的骰子,出现点数是偶数

分析 复合事件是由基本事件构成的,问题得以判断,

解答 解:抛掷一颗均匀的骰子,出现点数是2,4,6为基本事件,
而抛掷一颗均匀的骰子,出现点数是偶数,包含出现点数是2,4,6,
故抛掷一颗均匀的骰子,出现点数是偶数是复合事件,
故选:D.

点评 本题考查了基本事件的定义,复合事件的定义,任何两个基本事件是互斥的,任何事件(除不可能事件)都可以表示成基本事件的和,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{1}{2}$,P($\sqrt{3}$,$\frac{\sqrt{3}}{2}$)为椭圆C上的点.
(Ⅰ) 求椭圆C的方程;
(Ⅱ) 若直线y=kx+b(k≠0)与椭圆C交于不同的两点A、B,且线段AB的垂直平分线过定点M($\frac{1}{3}$,0),求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,斜四棱柱ABCD-A1B1C1D1的底面是边长为1的正方形,侧面AA1B1B⊥底面ABCD,AA1=2,∠B1BA=60°.
(1)求证:平面AB1C⊥平面BDC1
(2)在棱A1D1上是否存在一点E,使二面角E-AC-B1的余弦值是$\frac{\sqrt{6}}{3}$?若存在,求$\frac{{A}_{1}E}{{A}_{1}{D}_{1}}$,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在梯形ABCD中,AB∥CD,AD=6,cos∠ADC=-$\frac{1}{3}$.
(1)若∠CAB=$\frac{π}{4}$,求AC的长;
(2)若BD=9,求△ABD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知复数z=$\frac{3-ai}{2-i}$的实部为1,则实数a等于(  )
A.-2B.2C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.商店经理要合理地安排售货员的人数,安排多少名售货员依赖于顾客的人数,而顾客的人数是随机的,事先无法确定,如果假定商店经理知道任一时刻来到k名顾客的概率p,如下:
 k 0 1 2 3 4 5 6 7>7
 p 0.03 0.10 0.14 0.19 0.21 0.19 0.09 0.04 0.01
(1)安排3名售货员能以多大概率使顾客不用等侍?
(2)安排多少名售货员能以99%的概率使顾客不用等待?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列说法正确的是(  )
A.函数y=(x+a)2+b的图象经过点(a,b)
B.函数y=ax(a>0且a≠1)的图象经过点(1,0)
C.函数y=logax(a>0且a≠1)的图象经过点(0,1)
D.函数y=xa(a∈R)的图象经过点(1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,边长为2的正方形ABCD中,点E是AB的中点,点F是BC的中点,将△AED、△DCF分别沿DE、DF折起,使A、C两点重合于点A′,连接EF,A′B.

(1)求证:A′D⊥EF;
(2)求直线A′D与平面EFD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=sinx2的图象是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案