分析 (1)由条件利用梯形的性质,同角三角的基本关系,求得sin∠ADC、以及∠ACD的值,再利用正弦定理求得AC.
(2)利用诱导公式求得cos∠DAB,利用同角三角的基本关系求得sin∠DAB,△ABD中,由余弦定理求得AB,从而求得△ABD的面积为$\frac{1}{2}$•AD•AB•sin∠DAB 的值.
解答 解:(1)在梯形ABCD中,AB∥CD,AD=6,cos∠ADC=-$\frac{1}{3}$,
∴sin∠ADC=$\frac{2\sqrt{2}}{3}$,
∠ACD=∠CAB=$\frac{π}{4}$.
△ACD中,由正弦定理可得 $\frac{AC}{sin∠ADC}$=$\frac{AD}{sin∠ACD}$,即 $\frac{AC}{\frac{2\sqrt{2}}{3}}$=$\frac{6}{sin\frac{π}{4}}$,∴AC=8.
(2)若BD=9,∵∠DAB=π-∠ADC,
∴cos∠DAB=-cos∠ADC=$\frac{1}{3}$,
∴sin∠DAB=$\sqrt{{1-cos}^{2}∠DAB}$=$\frac{2\sqrt{2}}{3}$.
△ABD中,由余弦定理可得BD2=AD2+AB2-2AD•AB•cos∠DAB,
即 81=36+AB2-2•6•AB•$\frac{1}{3}$,∴AB=9,
∴△ABD的面积为$\frac{1}{2}$•AD•AB•sin∠DAB=$\frac{1}{2}$•6•9•$\frac{2\sqrt{2}}{3}$=18$\sqrt{2}$.
点评 本题主要考查梯形的性质,同角三角的基本关系、正弦定理和余弦定理的应用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $(\frac{5}{9},+∞)$ | B. | $(-∞,\frac{5}{8})$ | C. | $(\frac{5}{9},\frac{5}{8}]$ | D. | $[\frac{5}{9},\frac{5}{8}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | 0 | D. | -$\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-2,$\frac{1}{3}$] | B. | (2,+∞) | C. | (-∞,$\frac{1}{2}$] | D. | D[$\frac{1}{2}$,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{5}$ | B. | -$\frac{3}{5}$ | C. | $\frac{4}{5}$ | D. | -$\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 抛掷一颗均匀的骰子,出现点数是2 | |
| B. | 抛掷一颗均匀的骰子,出现点数是4 | |
| C. | 抛掷一颗均匀的骰子,出现点数是6 | |
| D. | 抛掷一颗均匀的骰子,出现点数是偶数 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com